
SOLUTION GUIDE 1

Shift Security Left with
Anchore Enterprise

Shift left security is a secure development practice that integrates vulnerability
scanning into continuous integration (CI) pipelines. It is also one of the primary
use cases Anchore Enterprise is addressing for customers today. Developers
gain early insights to potential vulnerabilities or policy infringements then are
able to prioritize findings or immediately remediate the issue.

Shifting left offers a number of advantages over traditional security processes,
in which security is addressed only after the product has been released:

Automate early vulnerability detection and remediation for priority
security findings (CISA KEV) with superior developer experience

In this guide we present a battle-tested, shift-
left developer workflow with the help of Anchore
Enterprise. The workflow infrastructure will include
GitLab as the continuous integration (CI) pipeline,
Anchore Enterprise as the vulnerability scanner
and Jira as the remediation tracking solution—the

most commonly used tools by federal customers.
The graphic below depicts the implementation
of these tools into a complete shift left security
solution. Anchore Enterprise is agnostic to CI and
remediation tracking tools, this same automation
can be achieved with your preferred tooling.

Pipeline
triggers Build Promote

image
Anchore

source scan
Anchore

image scan

Create Jira
ticket(s)

Fix or justify
finding(s)

Pass

Fail

Pass

Create Jira
ticket(s)

Fail

Done by Anchore Combination of Anchore with other tool Outside of Anchore

Solution Guide

1. Lower cost of remediation
2. Faster time to market

3. Improved overall security posture
4. Increased user trust

SOLUTION GUIDE 2

While implementing container security can be
seen as difficult, Anchore Enterprise is designed
to preserve the developer experience—a modern
DevOps experience without the friction or delays
of legacy security tooling. Using Anchore as a
blocking gate in the CI pipeline is an optional
choice. Anchore’s policy engine can also be
configured to only stop pipelines if there are critical
security findings or have actionable remediation
recommendations available. Flexible policies
allow for security teams to create policy checks
that reflect the optimal balance between risk and
developer velocity.

» Requirements

To implement the workflow reference architecture
above, you will need:

1. A GitLab account
2. AnchoreCTL configured in your GitLab

project >> see our docs
3. Access to a Jira project with the ability

to create new tickets
4. Access to an Anchore Enterprise deployment

with permissions to edit policy

Implement an end-to-end, automated DevSecOps
+ compliance workflow

Below we cover how to work with Anchore policies,
how to integrate Anchore into individual CI pipeline
stages and how to remediate or justify policy
violations.

The resources needed to follow along with this
guide are found in this GitHub repository.

Creating the Anchore Developer Policy Bundle

Policy in Anchore is a powerful yet flexible feature.
You can use and modify any of Anchore’s prebuilt
policy bundles (e.g., NIST 800-53, CIS, Iron Bank,
FedRAMP) or you can create your own custom
policy bundles meeting the unique requirements of
your organization.

In this example, we are using a policy bundle called
anchore-developer-bundle. This bundle is made up
of only two policy rules:

• Trigger on any CISA KEV findings, and
• Trigger if there are critical vulnerabilities in the

application (i.e., non-OS) with an available fix.

You can access a working version of this bundle
here.

Note: the CISA KEV policy gate was introduced in
Anchore Enterprise 5.8. You will need a deployment
with that version of higher to continue.

Note: If you don’t have an Anchore Enterprise deployment, you can get started in minutes
with a free trial on AWS commercial cloud. If you don’t have access to an AWS account,
contact sales@anchore.com to get a license and support.

• Container registry credentials added to Anchore Enterprise to access images built
in CI >> see our docs

SOLUTION GUIDE 3

Anchore and Jira Integration

Anchore Enterprise comes with anchore-jira,
a lightweight python script that integrates
anchorectl and the Jira API, to automate the
creation of Jira tickets when policy violations are
triggered in the CI pipeline.

First, anchorectl pulls a policy evaluation for the
source and image SBOM and creates a Jira ticket
for each Stop action in the policy evaluation. You
can review the script here and modify or extend it
to your needs.

API

APIanchorectl

Custom anchore-jira script

Anchore
Enterprise
Source of truth for:
Vulnerability
 information
Policy violations
POAMs
Justified findings

Jira
Source of truth for:
Security Issues
 that need to be
 remediated

This stage in the pipeline generates an SBOM
from the source code repository used to build the
container image. Anchore Enterprise identifies
vulnerabilities and other security issues that
require remediation. If the pipeline stops here,

 it is due to a direct dependency. Developers
save time by receiving security feedback early in
the development process to inform and prevent
architectural decisions from coming back to bite
them during the release and deploy stages.

Anchore Source Scan Stage

Pipeline
triggers Build Promote

image
Anchore

source scan
Anchore

image scan

Create Jira
ticket(s)

Fix or justify
finding(s)

Pass

Fail

Pass

Create Jira
ticket(s)

Fail

Done by Anchore Combination of Anchore with other tool Outside of Anchore

SOLUTION GUIDE 4

The Source Scan Stage executes the following 5 steps:

1. Install the CLI tools:

• syft (Anchore’s open source SBOM generation tool), and
• anchorectl

2. Syft generates an SBOM for the source code in the repository—then anchorectl
pushes that SBOM to the centralized SBOM repository in the Anchore Enterprise
deployment

3. Isn’t there a step here where the AE deployment runs the SBOM against the
organization’s policies and generates a policy evaluation scan?

4. anchorectl then pulls the policy evaluation from the Anchore Enterprise
deployment for the submitted SBOM

5. The generate_policy_tickets_jira.py script then evaluates the policy evaluation
for any Stop actions and creates Jira tickets for all policy violations

6. anchorectl stops the pipeline if the policy evaluation had any Stop actions. If
there are no Stop actions, the pipeline continues to run

Below is an example of the GitLab build steps that will execute
the process outline above:

anchore-source-scan:
 stage: anchore-source-scan
 image: ubuntu:latest
 script:
 - apt update
 - apt install curl -y

Install anchorectl and syft

 - curl -sSfL https://anchorectl-releases.anchore.io/anchorectl/install.sh | sh -s -- -b /
usr/local/bin
 - curl -sSfL https://raw.githubusercontent.com/anchore/syft/main/install.sh | sh -s -- -b
/usr/local/bin

Generate source code SBOM and push to Anchore Enterprise deployment

 - syft -o json . | anchorectl source add -a anchore-demo@latest gitlab.com/your-gitlab-
project/anchore-demo@$CI_COMMIT_SHA --from -

Run Jira script to create tickets if there are Stop actions for this SBOM

python3 anchore_jira_ticket_generator.py

Break pipeline if this SBOM fails an Anchore polict evaluation

anchorectl image check anchore-demo@latest gitlab.com/your-gitlab-project/anchore-
demo@$CI_COMMIT_SHA -p anchore-developer-bundle -f

SOLUTION GUIDE 5

This stage in the pipeline follows the same logic
as the source scan stage. After the image is built,
Anchore generates an SBOM for the image. It

then pushes that SBOM to Anchore Enterprise,
and stops the pipeline if our anchore-developer-
bundle policy detects a policy violation.

Anchore Image Scan Stage

Pipeline
triggers Build Promote

image
Anchore

source scan
Anchore

image scan

Create Jira
ticket(s)

Fix or justify
finding(s)

Pass

Fail

Pass

Create Jira
ticket(s)

Fail

Done by Anchore Combination of Anchore with other tool Outside of Anchore

anchore-image-scan:
 stage: anchore-image-scan
 image: anchore/enterprise-gitlab-scan:v4.0.0
 needs: [“build”]

Install anchorectl

 - curl -sSfL https://anchorectl-releases.anchore.io/anchorectl/install.sh | sh -s -- -b $HOME/.
local/bin

Push the image to Anchore to generate the SBOM

 - anchorectl image add --no-auto-subscribe --wait --dockerfile Dockerfile --force --from registry
${ANCHORE_IMAGE}

Run Jira script to create tickets if there are Stop actions for this SBOM

python3 anchore_jira_ticket_generator.py

Break pipeline if this SBOM fails an Anchore policy evaluation

anchorectl image check --detail $ANCHORE_IMAGE -p anchore-developer-bundle -f

SOLUTION GUIDE 6

If Stop actions are present in a policy evaluation
for an SBOM in the pipeline, the pipeline will fail. The
policy violation will need to be remediated before
the pipeline can be re-run. The most common
remediation actions are:

1. Fix the issue, by upgrading the impacted
component to a patched version,

2. Justify the finding, or
3. Create a Plan of Action & Milestone (POAM) to

mitigate the issue at a future point in time.

All of the Stop actions that get triggered by the
anchore-developer-bundle will have a fix available.
If upgrading the impacted component causes breaking
changes to the application, then a justification or
POAM can be specified. The justification can be added
to Anchore Enterprise’s Allowlist to either indefinitely
allow the finding, or temporarily allow the finding for a
specified amount of time. Once a finding is added to an
Allowlist in Anchore, the Stop action will instead return
a Go action in the policy evaluation and no longer
cause pipeline to halt.

Fix or Justify Findings

To read more about using Allowlists in Anchore,
please refer to our docs. For example justifications,
please look at the references listed at the end of
this guide.

Below is an example screenshot of a Jira ticket
that is generated by the anchore_jira_ticket_
generator.py script. It captures which component
is impacted, and what version the fix is available in.

Summary

This solution guide provides a comprehensive
approach to integrating Anchore Enterprise into
CI pipelines to enhance security measures for
developers. Focusing on the most commonly used
DevSecOps tools used by federal customers—GitLab
and Jira. The guide outlines an automated workflow
to identify and prioritize security findings without
hindering the developer experience. Anchore’s
flexible policy engine achieves this by only flagging
critical security issues with actionable remediations.
This creates an optimal balance between the
security risks and developer velocity for the
organization.

The guide highlights the major steps to achieve this
automated workflow:

• Create and customize a policy bundle to flag
critical vulnerabilities

• Example CI/CD pipeline configurations for
source and build stages that

• Generate SBOMs
◊ Evaluate the SBOM against the policy

bundle
◊ Automatically create Jira tickets based

on policy violations
◊ Actions to remediate policy violations

This shift left strategy of identifying and remediating
prioritized security issues early in the development
process has significant benefits, including: lower
cost of remediation, faster time to market, improved
overall security posture, and increased user trust.

SOLUTION GUIDE 7

For further details on integrating Anchore Enterprise with your CI/CD pipeline, refer to the official
Anchore Enterprise documentation or contact our support team.

anchore-shift-left-automation GitHub repo:
https://github.com/connorwynveen/anchore-shift-left-automation

References

Justifications Table

JUSTIFICATION FINDING JUSTIFIED
GUIDELINES

ADDITIONAL INFORMATION

False Positive No mitigation or re-
mediation required

False positives include items that a scanner incorrectly
identifies such as a wrong package or version. This does NOT
include findings that are mitigated or “not exploitable”.

Disputed No mitigation or re-
mediation required

Issues marked as DISPUTED within the NVD. This does NOT
include issues a contributor is disputing. It must be marked as
such within the NVD.

Won’t Fix Must be mitigated;
must be remediated

Upstream (not OS distribution such as Redhat, Debian, Ubun-
tu, etc.) states they will not fix the security flaw.

Distro - Won’t Fix No mitigation or re-
mediation required

Issues marked as WONT_FIX by the vendor. Reserved for OS
distributions packages.

No Fix Available Must be mitigated;
must be remediated

There is no patch available. This ONLY considers the vulnera-
ble library itself, not downstream products.

Distro - Pending
Resolution

Must be mitigated;
must be remediated

Vulnerability is for a library provided by the Operating System
(OS) distribution. Only applicable when using the latest ver-
sion of a distribution and library.

Mitigated Mitigation is comple-
te; must be reme-

diated

Issue has a mitigation that reduces severity or risk.

Not Vulnerable Mitigation is comple-
te; must be reme-

diated

Issue is not exploitable within application.

Unreleased Must be mitigated;
must be remediated

Fix is available in a branch for the next release but is not yet
available.

Pending Resolution Must be mitigated;
must be remediated

Upstream project is aware of vulnerability and is tracking an
issue ticket to fix.

True Positive Must be mitigated;
must be remediated

Image is vulnerable to this finding. Default state of a new
finding.

Policy N/A No mitigation or re-
mediation required

Product functionality requires security policy exception. (Only
applies to policy findings, not CVEs.)

GO

m

©2024 Anchore

sales@anchore.co
anchore.com

