
1

Container
Security
for US
Government
Information
Systems

info@anchore.com

www.anchore.com



2

Introduction–Container Security 3

Purpose 4

Audience 5

The Container Advantage 6

Essential Container Security 10

Core Guidance for Container Security
Implementation 13

Why does Container Security Matter for DoD and
Federal environments? 17

Classified Environments and Containerization 18

How do container security tools help the U.S.
Government with Continuous Monitoring and
Continuous ATO? 19

Why is Policy Important? 20

Conclusion 21

About Anchore 21

Contents



Introduction 3

imely updating and upgrading of software,

remains number one advisory in the NSA Top

10 Mitigation Strategies for Cybersecurity:

Apply all available software updates, automate the

process to the extent possible, and use anupdate

service provided directly from the vendor.

Automation is necessary because threat actors

study patches and create exploits, often soon after a

patch is released. These “N-day” exploits can be as

damaging as a zero-day. Vendor updatesmust also

be authentic; updates are typically signed and

delivered over protected links to assure the integrity

of the content.Without rapid and thoroughpatch

application, threat actors can operate inside a

defender’s patch cycle.

Efficient patching was once the easy hit for security

and operations teams. However, the emergence of

containerization at the core of the modern continuous

integration and continuous development (CI/CD), has

introduced an additional, opaque layer of complexity

for platformmanagers and security teams

monitoring the software cycle.

If this complexity is not managed andmonitored

effectively, it can provide a significant new attack

surface, where threat actors can introduce critical

vulnerabilities into otherwise secure government

platforms.

Federal organizations need to be aware that effective

container security involves far more than the ability to

scan the contents of a container. To work efficiently,

security must be integrated into the CI/CD workflow

and it must operate in synchronization with the speed

and processes of modern containerized

development.

Introduction–
Container Security

T

https://apps.nsa.gov/iaarchive/library/ia-guidance/security-tips/nsas-top-ten-cybersecurity-mitigation-strategies.cfm
https://apps.nsa.gov/iaarchive/library/ia-guidance/security-tips/nsas-top-ten-cybersecurity-mitigation-strategies.cfm


Purpose 4

he purpose of this document is to provide

information security best practices for

Federal organizations who have chosen to

deploy containers at scale. The paper offers specific

guidance and recommendations for these

organizations on implementing an effective

DevSecOps process.

Federal authorities have published a notable

document covering basic aspects of container

security: NIST 800-190 Application Container Security

Guide. However, much of the additional, relevant

industry knowledge is then spread across various

peripheral documents such as, NIST 800-53 Rev.4

:Security and Privacy Controls for Federal Information

Systems and Organizations , NIST 800-171:Information

Security Continuous Monitoring (ISCM) for Federal

Information Systems and Organizations, U.S.

Department of Defense Cloud Computing

Requirements Guide and various FedRAMP

publications.

This paper seeks to consolidate some of the relevant

information from these various guidelines. It also

presents some timeless information security best

practices as they pertain to container security. The

aim is to provide DevOps and SecOps teams, and

their management, with a set of simple solutions and

methodologies to maintain secure control of their

containers throughout the deployment lifecycle.

Our goal is to provide a simple approach for

implementing andmaintaining control of container

security at scale within Federal information systems.

Purpose

T



Audience 5

he intended audience for this paper is for

security engineers, DevOps engineers,

security administrators, information system

security officers (ISSO), information system security

managers (ISSM) and Chief Information Security

Officers (CISO). The document is relevant for anyone

who is interfacing with containers within their

information system and authorization boundaries

within the U.S. Department of Defense (DoD) and other

U.S. Federal organizations.

The content assumes the audience has a solidified

understanding of cloud architecture, DevSecOps,

containerization technologies, and amoderate

understanding of a CI/CD workflow in a Federal

workspace.

Audience

T



The Container Advantage 6

Introduction

ontainers are a powerful tool that is highly

complementary to existing VM or Cloud

instances. They are gaining wide adoption

within the development community, and now enjoy

strong support from a wide array of major vendors.

By passing around immutable images, containers

offer strong development advantages, both in

developer experience and potential automation.

C Although they bring unique security challenges, these

are manageable using the correct tooling and by

adopting a strong container-focused security model.

With the correct approach, containers can not only

increase developer velocity, but also substantially

strengthen security within all Federal organizations.

I

The Container
Advantage



The Container Advantage 7

Lifespan and Mutability

ontainers bring considerable advantages that extend far beyond older virtual

machine (VM) infrastructure. In certain ways, containers can be seen as the next

evolution of VM’s. And increasingly, existing VM infrastructure and practices are being

repurposed to accommodate container platforms.

Virtual Machines are essentially server hardware encapsulated within hypervisor software. This

allows a single large server to be presented as many smaller ones. It enables a more effective

use of resources through the more efficient sharing of CPU and RAM. VM’s are also fully isolated

from each other, which adds to security as long as the Hypervisor software is secure.

However, once they are launched from a ‘Golden Image’, VM's are mutable, and can be altered

in much the same way as the servers they replace. Tools such as Ansible, Puppet or Chef are

used in an attempt to manage changes and control configuration

drift. But where problems arise, operators will often change

configuration manually as part of any fix.

Because ‘state’ within VM’s is long-lived andmutable, they can be

challenging to monitor andmanage, and almost impossible to keep

in lockstep with each other over time. This is perhaps the most

significant difference between VM’s and Containers.

Containers are often thought of as lightweight virtualization, they are short-lived to the point of

being disposable and core aspects of their immutability can be set in stone.

A container should be viewed as a wrapper for a single process, rather than a general machine.

They offer a very isolated way to run a process. They are run on top of a shared operating

system kernel, but this is within their own highly isolated user environment. This increased

granularity makes containers evenmore efficient than virtual machines for sharing resources,

with orchestration platforms such as Kubernetes offering the ability to managemany

thousands of containers efficiently.

Containers and the processes running within them, are constantly started and stopped and

may only exist for a fraction of a second. Any changes made to the container during its lifetime,

do not survive restarts. And because the images are both immutable and containers short-

lived, this makes it relatively trivial to avoid configuration drift.

A container should
be viewed as a
wrapper for a single
process, rather than
a general machine

C



This flexibility creates a
massive developer

advantage, allowing them
to create, share and

improve upon an entire
system.

The Container Advantage 8

System Sharing

ne key advantage that containers have over

VM's is that they are easy to package and

share as a complete deployable, covering

everything from developed code through to

operating system configuration.

Container images are generally developed using a

simple and declarative configuration language

(although, existing tools such as Puppet or Ansible can

also be readily used to build images). Once created,

the images are simple to distribute, either as

compressed files or,

more commonly, using a

'registry'. The registry

provides a central image

store on either the public

or private network where

developers can then pull

down an image to the

local machine with a

simple command.

Shared images are then

ready to use, either by running them directly, or using

them as a compositional piece in a new image.

This flexibility creates a massive developer

advantage, allowing them to create, share and

improve upon an entire system. Rather than having to

intuit how to set up the sometimes-complex set of

packages and configuration to run a system, a

developer can simply run the image.

It also allows developers

to share their variants of

these systems easily.

Organizations may

determine a particular

version of a product,

such as Postgres, that

must be used when

developing internal

solutions. Containers

make it trivial to prescribe and provide these bespoke

configurations to developers for use in their

development cycle.

This collaborative approach offers another crucial

advantage for developers, letting them begin

developing immediately against a production-like

environment. It also allows them to discover issues far

earlier in the development cycle. Bugs that would

typically have only been caught when code was

promoted into a managed environment, can now be

found and fixedmuch earlier on the developers'

laptop.

O



The Container Advantage 9

The Core of Modern Development

evelopers can now easily package and share, not just isolated containers,

but full environments. This has led to an explosion of container use.

Increasingly, containers are being offered as the first-class installation

experience, with more 'traditional' models of packing becoming less and less

prevalent.

This enthusiasm for containerization has spread to even the largest vendors.

Companies such as Red Hat and Microsoft are offering software in containers and

engaging and contributing to the broader ecosystem. Increasingly, developer

tooling such as IDE's can integrate with containers, leveraging their ease of use and

collaborative properties to ease the development lifecycle.

Kubernetes is now firmly entrenched as the container orchestration tool of choice,

with every significant cloud provider now offering amanaged version. Developers

are increasingly turning to containers to both develop against known and trusted

development environments, but also to

massively increase development velocity.

Where a developer may once have had to

spend half a day installing a Postgres database

to develop against, they can now install it in

seconds using a container available within the

public registry. In the past, developers may have

had to maintain many different versions of a

language and framework on their laptops, and use workarounds to make sure

each project used the correct one, now they can do so easily by isolating each one

within a container.

Containers have been transformative to how developers work, and Anchore is built

to maintain and optimise security in a world where containers will increasingly

become the de facto way to package and distribute software.

D

This enthusiasm
for containerization
has spread to even
the largest vendors



Essential Container Security 10

New Threats...

hile containers can dramatically increase

the speed of development and foster

greater collaboration, they have created

their own, new set of security challenges.

Container images are commonly constructed from

other parent images. Developers will rarely create an

image from scratch. Instead, most will turn to existing

parent images such as Ubuntu, or the slimline Alpine

images.

However, these images are sparse, usually composed

of a shell and some form of packagemanagement

software. For developers using a language such as

Python or Ruby, these parent images still require

additional work to be usable. As a result, they may

turn to an image that makes use of the upstream

W Ubuntu images but also installs the language of their

choice.

If our developer then wishes to make use of a

framework such as Rails they may still have some

work to do. In this case, the developer may turn to a

parent image that has already packaged Rails. In this

scenario, the developer is using a parent image that

inherits from at least two, and possibly more parent

images itself.

With every fresh indirection at the parent image level,

attackers have a further opportunity to implement

malicious software. Moreover, this threat would not be

immediately apparent to the developer, as it would

be hidden behind the convenience that parent

images provide.

Essential Container
Security



Essential Container Security 11

Therefore, if any container is left unchecked, it

becomes a potential vehicle for any aggressor to

move potential malicious software within the security

perimeter. Air Gapping would not necessarily prevent

this; since images can be passed as compressed

bundles and so, could be passed in without requiring

access to a public network.

In this way, containers compound the already well-

understood threat of supply chain attacks.

Recent attacks, such as the Magecart attack, have

relied on bad actors smuggling malicious software

into projects via a seemingly innocuous library that

has been consumed by an upstream developer. Tools

exist that can scan for these threats. However, many

were developed prior to mass container adoption, do

not work well with containers and are unable to

inspect them effectively.

This gap in tooling creates a dual-threat where either

the underlying operating system or the application

code in a container can be vulnerable to supply chain

attack. In addition, the simple configuration language

used to construct containers can lead to bad

practices creeping in.

There are many well-acknowledged techniques to

secure containers, such as ensuring the Root user is

not used to run the process, or that ports are not

exposed without good reason. However, with most

tools, these are not policed at run time. Again, the

composable nature of containers means that parent

images that fail to use these good practices, can pass

vulnerabilities downstream, even if developers inside

an organization would typically implement best

practice themselves.

Containers running processes with heightened

privileges increase the possibility of an aggressor

being able to launch attacks on the underlying

container host, and this ability must be constrained.

However, detecting inappropriate access permissions

within a container image is challenging without

specialist tooling.



Essential Container Security 12

...and New Advantages

t is evident that containers bring new security

challenges; however, they can also bring

profound security advantages, especially in high-

security situations.

By their very nature, container images are immutable;

once created, they can be analyzed, approved and

given a unique hash to ensure provenance. This

unique feature of containers gives them amassive

advantage over VM images.

VM images may start in the same place, with an

image that is identifiable and certified, but once in use

it's mutability

renders this moot.

VM's must be kept

under constant

scrutiny, to track

identify and

remediate

changes. To be

effective, this

scanning and

remediation must

be rapid, frequent

and reliable.

Containers do not

have these needs. If for some reason a container is

considered suspect, it can be killed, and a new,

identical container will take its place. Using

orchestration systems, this advantage can be

extended further. By ensuring a container’s useful life

is measured in minutes before it is killed, the attack

Containers offer an
improved security
profile during
development,
giving developers a
working replica of
the environment in
which their code
will execute

surface of the container is massively reduced. It

ensures that the useful time an attacker has to

establish a beachhead, explore the system and enact

countermeasures is virtually non-existent. Every time

the container is restarted, it is in the certified state

that is known to the development, operations and

security teams.

Containers also offer an improved security profile

during development, giving developers a working

replica of the environment in which their code will

execute. Rather than working on assumed knowledge

of the upstream environments, they will be able to

reason and work with a replica and identify issues

early. This approachmassively reduces inadvertent

issues introduced at the development stage and

makes it easier for developers, platform and security

engineers to collaborate effectively.

Finally, due to the composable nature of containers, it

is relatively trivial for organizations to create and

prescribe approved parent images. These parent

images can be created from an organizational base

layer, allowing DoD and Federal organizations to have

fine-grained control of exactly what is deployed, and

how it is configured, within their platform

environment.

Managers can not only provide a set of secure parent

images, they can black-list bad images or even limit

any ability for developers to pull public images. In this

way, platformmanagers and security operatives can

be assured that all images in use are configured in

accordance with best practice.

I



Core Guidance for Container Security Implementation 13

Core Guidance for Container
Security Implementation

1) Follow the 30/60/90 rule to keep images
secure

nchore recommends following the

30/60/90 rule to satisfy the guidance

outlined in the DoD Cloud Computing

Security Requirements Guide. This rule sets out the

number of days it should take for security issues to be

fixed, once they have been discovered: critical

vulnerabilities should be fixed in 30 days, high

vulnerabilities in 60 days andmoderate vulnerabilities

within 90.

In support of this, it is also strongly recommended to

make use of a tool that allows security teams to

frequently update and validate vulnerability

databases with new security data. This is needed to

satisfy Security Controls RA-5(2), as well as being

good practice to ensure security data is timely and

relevant.

By following the 30/60/90 rule and ensuring that

vulnerability databases and feeds are updated

promptly, SecOps teams are empowered to respond

and remediate new security challenges quickly and

efficiently.

2) Make use of tools that support container
image white/black listing

ederal Organizations should leverage

container security tools that can enforce

white and blacklisting of container images.

Maintaining white and blacklists are common

methods of securing networks and software

dependencies, however, they are less common in a

containerized environment.

This capability is crucial, as containers can potentially

be used as amethod to deploy blacklisted software

into secure areas. Containers can obfuscate the

software bill of materials (BOM) from existing

scanning tools. It is crucial that the tools used can

examine the contents of a container and can enforce

white and blacklist safeguards.

Anchore advises that container image blacklisting

should take place at the CI/CD stage to allow for rapid

feedback. By shifting the security feedback to the

developers, they receive immediate feedback on

issues. This technique allows for faster remediation, as

blacklisted container images, or the software

contained within them, are flagged to the developer

immediately.

A F



Core Guidance for Container Security Implementation 14

3) Deploy a container security tool that can
maintain strong configuration
management over container images and
software within those images

he software delivery and security operations

teams should maintain an accurate

inventory of all software deployed and used

on any federal information system. This inventory

gives both teams accurate situational awareness of

their systems and enables more accurate decision

making.

To maintain a sound security posture in line with NSA

guidelines, security teams should then reference this

inventory to actively remove any unwanted,

unneeded, or unexpected software from the

information system.

The NSA further explains, "Active enterprise

management ensures systems can adapt to

dynamic threat environments while scaling and

streamlining administrative operations."

In line with relevant controls (CM-8(3)a), Anchore

advises that Federal organizations leverage a

container-native security tool that can systematically

deconstruct and inspect container images for all

known software packages and display it to

information security personnel in an organized and

timely manner.

T

4) Use a container scanning tool that can
run on all Impact levels ranging from IL-2
through IL-6

large number of Federal Organizations

must leverage tools that keep any

vulnerability data regarding the

information system within their authorization

boundaries. However, many scanning tools require an

agent that connects to the vendor’s external cloud

environment. This is designated as interconnectivity

between DoD/Federal systems and the tool vendor,

and would rule out the use of any agent/cloud-based

tool within an IL-6 classified environment.

Where organisations still choose to implement an

agent-based container security tool, they are then

responsible for ensuring that the security vendor

maintains an up-to-date accreditation for their cloud

environment. The environment must also have the

relevant RMF/FedRAMP security controls that can be

inherited by the Federal information system during

the ATO process. In addition, any DoD or Federal

agency should ensure the agent-based tool is

capable of running in both classified/unclassified

environments.

A



Core Guidance for Container Security Implementation 15

5) Leverage Container Native Tools to
Support Continuous ATO

raditional vulnerability scanners such as

Nessus, Qualys, TrendMicro (amongst many

others) are used to provide valuable

artefacts to third-party auditors. These are used to

support validation efforts before an ATO decision is

made. Although vitally important, such tools maymiss

security issues inherent in a containerized

environment.

As such, all Federal information systems should make

use of container-native security tools that can

produce reporting assets. These reports, focused on

the container threat surface, are equally as important

as other vulnerability reports, and are vital in forming

an end-to-end view of security.

Reports need to be timely, digestible and offer a level

of detail that can satisfy the needs of both technical

non-technical stakeholders. Ideally, reports should be

able to interoperate with other tools in use with

security operations and cyber threat intelligence

teams in Federal markets. These reports serve as

essential artefacts to be reviewed in the Continuous

ATOmodel.

6) Engage auditors that understand
DevOps lifecycles

evSecOps is the modus operandi of software

development for the DoD for the foreseeable

future and is seen in the broader civilian

sector as being a key technique for secure software

development.

Implementing a Continuous ATO process requires the

DoD and other Federal agencies to deploy security

control assessors (SCA) or Third Party Assessment

Organization (3PAO). Where this process is being

applied to container based development, it is

essential that the auditor has a concrete

understanding of the DevSecOps model.

Crucially auditors need a solid understanding of

containerization security threats, trends, and risks as

they pertain towards both RMF and FedRAMP ATO's.

This fundamental understanding of container security

best practices and relevant threat models, is crucial

before undertaking any audit activities against a

system that makes extensive use of containerization.

Without this understanding, auditing maymiss

fundamental security issues that are specific to

containers.

DT



Core Guidance for Container Security Implementation 16

7) Shift Security Left

hifting left' is a term used to describe tools

and practices that improve and encourage

more rapid feedback into the early stages of

development. Feedback can be varying different

types of operational and functional insight and

information. However, the objective is always to hand

bugs and fixes back to developers as part of a

smooth, ongoing, continuous development process.

Unit testing is a familiar example of shifting left, by

delivering early, user-experience feedback on

functionality. This ensures that most problems are

caught early, during the development stage, where it

is quicker and simpler to remedy them.

By shifting security left, the handling of each

vulnerability becomes an integral part of the CI/CD

pipeline. This prevents a mass of vulnerabilities

appearing as a single irritating blockage before

systems can be admitted into production. More

frequent vulnerability scanning during development

ensures bugs and other issues can be dealt with

quickly and easily, as they arise, and security

becomes a part of the development process.

With the primary focus of CI/CD environments on fast,

efficient development and innovation, security has to

work efficiently as part of this process. Anchore

advises that DoD and Federal security teams should

use tools that can deliver rapid feedback into

development. Security tools must integrate with the

common CI/CD and container orchestration tools,

and should promote early-stage interaction with

developers.

8) Express security policy as code

here possible, tools should be selected

that enable security policy to be defined

as code. This brings the ability for Security

operations teams to establish best practices that can

then be usefully automated and pushed to tools,

either across the network or in more secure

environments, via an air gap.

Expressing security policy as code also enables

systems to bemanaged using existing software

development life cycle (SDLC) techniques, allowing

policies to be versioned, and for versions to be

compared for configuration drift or unexpected

changes. In essence, it will enable the policies

themselves to be subjected to the same level as

rigour as the code they are applied against.

Where the onus of implementing new security policies

has been shifted left onto developers, it can be

important not to tighten container security policies

too far in one single step. Versioning also enables any

agencies to improve and tighten security policy over

time.

This iterative approach towards improving security,

stops over-intrusive security policy from stalling

development in the CI/CD pipeline, and prevents the

emergence of any culture clash between developers

and security operations. Security teams can begin

with a policy base that delivers on minimum

compliance standards and develop this over time

towards evolving best practice.

S W



Why does Container Security Matter for DoD and Federal environments? 17

n the past, the DoD has built applications on

standardized virtual machines in accordance with

Security Technical Implementation Guides (STIGs)

and applicable hardening guides. To validate this,

Security Control Assessment (SCA) teams have

utilized STIG validation tools to ensure that proper

STIG’s are implemented for both the operating system

and any additional software running on top of the

base OS.

Within the DevSecOps model, it is vital to expand

software management, application security, and

software patching into container security. Container

images must be inspected for vulnerabilities,

suspicious software packages, outdated packages.

Without this, it remains possible for vulnerable

applications that are composed as container images

to be placed into Federal production environments.

Security teamsmust first know what vulnerable

software is running on the system and which images

are affected by vulnerabilities. They must then

ascertain whether there is a patch/fix available, or an

updated version of the affected image. After they

gain this insight, they can begin taking the necessary

steps to introduce vulnerability remediation in a

timely manner that complies with the following

FedRAMP and DoD standard below:

Why does Container Security Matter
for DoD and Federal environments?

Anchore believes this standard should be enforced

for all Federal organizations deploying containers in

order to provide a stabilized security posture for

Federal information systems. The DoD Cloud

Computing SRG explains, “For both FedRAMP and

FedRAMP+ requirements, high and critical risk findings

must be mitigated within 30 days. Moderate findings

must be mitigated within 90 days,” (Corresponding

Security Controls: CA-5, CA-7).

It cannot be overstated that simply scanning for

vulnerabilities does not represent a sufficient strategy

for successful risk mitigation and container security

within a DoD environment. To ensure timely

remediation, scanning must be integrated into the

CI/CD workflows: insights from scanning should be

made available to developers as early as possible;

any required action must become a smooth and

seamless part of the ongoing development cycle; and

security teams need the ability to monitor and report

on progress.

A large part of success in the execution phase of

container security lies in developing an effective

DevSecOps culture within the organisation. However,

security tooling designed around a DevOps workflow

can be vital to foster and facilitate this change.

I



Classified Environments and Containerization 18

ontainerization in classified environments is

nothing new. And yet, while container

security in classified environments has

strategic importance to DoD customers, there has

very little literature of successful implementation

strategies.

Container security can be implemented on a

classified system in a controlled manner through a

typical DMZ set up in the environment. Any

vulnerability feed can be imported to the DMZ and

updated periodically according to the organization's

standards and program requirements.

Security engineers must validate that the container

security tool installation has up-to-date vulnerability

data. The tool itself should never be connected

directly to vulnerability sources via the internet.

However, up-to-date vulnerability information can be

pulled via a proxy server that is connected to the

internet and that sits outside the DMZ.

Additionally, engineers must have a separate test

environment from production that allows them to

build images and then scan those images for relevant

vulnerabilities and compliance issues. This allows

software engineers and security teams alike to

validate container images before introducing them

into a production environment at the classified level.

Classified Environments
and Containerization

C



How do container security tools help the U.S. Government with
Continuous Monitoring and Continuous ATO?

19

SP’s and Federal information systems should

already be providing vulnerability scanning

artifacts for cloud and on-prem

environments running traditional virtual machines

(VM). These are relied on by multiple security control

assessors and third party auditors.

The DoD Cloud Computing SRG explains,

“Understanding existing vulnerabilities and risks within

the enterprise is a key component in performing

effective Cyberspace Defense analysis. The

vulnerability reports and POA&Ms developed by the

CSPs as part of continuous monitoring requirements

supporting both FedRAMP and FedRAMP+

requirements will be made available to DISA’s cloud

services support team and subsequently to the

organizations performing MCD and BCD Actions for

their collective use in providing Cyberspace Defense”

(CA-2).

Security control assessment teams should scan,

collect, and analyze vulnerability scan data as part of

best practice. This should be used to validate Federal

information systems and CSP’s are complying with

relevant RMF/FedRAMP security controls, including RA-

5; Vulnerability Scanning.

RA-5 states “ Scans for vulnerabilities in the

information system and hosted applications...”. If the

Federal agency is implementing DevOps and

containerization, it is therefore essential for security

control assessment teams to be validating

vulnerability scans for any containers that will host

applications living on U.S. government information

systems.

Federal agencies should leverage container security

tools that can support continuous monitoring and

continuous ATO efforts. Agencies and supporting

CSP’s should be leveraging a container native tool

that is possible of generating reports that can

integrate with other vulnerability detection systems,

augment cyber threat intelligence data, and provide

the artifacts necessary to support risk assessment

teams in the Continuous ATOmodel.

Preferably, these tools should then be integrated into

their larger security suite, where vulnerability and log

data can be centralized. This directly supports the

continuous monitoring capabilities that should

already be put in place for NIST 800-137 compliance.

Additionally, Anchore recommends providing monthly

reviews of container vulnerability and compliance

scans in-line with the guidance found in CSP

Continuous Monitoring Strategy Guide produced by

FedRAMP (RA-5a/5d,SI-2c/SI-2(2),CA-7g).

How do container security tools help the U.S.
Government with Continuous Monitoring and
Continuous ATO?

C



Why is Policy Important? 20

olicy is important whenmaintaining a strong

container security solution. It allows any

container security tool to align with the

various regulatory security requirements stipulated

by each Federal agency. A security tool should be

capable of incorporating policy elements, from both

CIS benchmarks and the various DISA STIGs.

Althoughmany STIG’s have inherent security

configurations that pertain to the kernel level,

anything at the non-kernel level can be configured for

the container images. As a result, organizations can

leverage the policies to validate that they are

meeting security engineering requirements and

various compliance baselines ranging from the DoD

to FedRAMP.

Anchore encourages organizations to create

hardened base images that have met the select

baselines of the Federal organization for developers

to use.

Employing a hardening methodology is

fundamentally important due to the inherent nature

of information systems not being secure out-of-the-

box. By implementing a hardening guide, the security

of information systems, network, and configuration

are enhanced, decreasing the surface area for

attackers. Hardening systems also apply

maintenance standards for software updates and

vulnerability triage, ensuring proper and secure

management of software artifacts composing these

information systems.

Why is Policy
Important?

P

Employing a hardening
methodology is

fundamentally important
due to the inherent

nature of information
systems not being secure

out-of-the-box



Conclusion 21

he U.S. Department of Defense (DoD) is, in

many ways, leading the field in container

security and providing a roadmap for a

broader US Federal rollout.

The unimpeachable standards of the DoD and other

agencies have highlighted early on that

containerization demands a new approach to

security. Traditional scanning tools and amanual

approach to container security simply do not meet

the stringent requirements for defense systems and

Federal-grade security.

It is clear that containerized development requires

security tools that integrate with the DevOps process

and CI/CD pipelines. Without this, it becomes

impossible for security teams to meet Federal

requirements without wiping out many of the

efficiency gains of container-based development.

Conclusion

ased out of Santa Barbara, California Anchore provides a set of tools that

provide visibility, transparency, and control of your container environment.

The Anchore Professional Services team helps users leverage Anchore to

analyze, inspect, scan, and apply custom policies to container images within

custom CI/CD pipelines.

About Anchore

T

B
info@anchore.com

anchore.com

mailto:info@anchore.com
https://anchore.com/
https://anchore.com/

