
1

According to recent research from the CNCF,
the use of containers has increased significantly
during 2019, with 84% of survey respondents now
using containers in production - an annual jump
of more than 15%.

The humble software container has created a tornado in the tech industry.
It has taken all aspects of the software lifecycle, spun them around, and
blended them together in new and previously unimaginable ways.

Security is no exception. Containerization has changed the required model
for software security just as radically as it has changed software design,
development, distribution, testing and implementation.

Without a solid, focused strategy for container security, the modern
enterprise is opening up a significant new attack surface and leaving it
largely unchecked.

As a result of this, the software container scanning marketplace is becoming
increasingly crowded. New entrants are appearing regularly, eager to
capitalize on the obvious need of development teams to secure this
relatively new technology.

Container scanning is, in many ways, now a commodity, with many vendors
offering it alongside ‘traditional’ security scanning services. The nature of
containers makes it relatively simple to scan them on a superficial level.
Creating additional services around containers makes sense for existing
security vendors, allowing them to offer a tempting ‘all-in-one’ security suite.

 THE FUNDAMENTALS
OF CONTAINER 	
SECURITY
Transform a growing IT security
liability into a powerful new asset.

2

However, container scanning is only the start point for effective
container security. Most container security solutions miss the real
point of containers, treating them much like virtual machines (VMs)
or servers. By and large, existing vendors offer late-stage scanning
solutions, waiting until a container image is fully developed and ready
for deployment and, only then, blocking its release.

Waiting until the very end of the development lifecycle to intervene,
destroys the velocity advantage that containers provide. Fixing security
issues becomes, at best, slow and disruptive, forcing a complete,
additional development and testing cycle to fix security issues. At worst,
angry developers will actively seek to circumvent such a system or push
for it to warn only. At this point, container security is in name only.

Container security is not purely a technical fix or tool. To deliver results
without hindering the original efficiency benefits of containerization,
container security must be designed, from the ground-up, to fit with a
container-focused software delivery model. Security insights must be
shifted left, and embedded back into the CI/CD (continuous integration
and continuous delivery) workflow.

In this paper, we start by exploring some of the general background
around containerization, its benefits and how many of these benefits
can be extended to security. We then go on to look at some of the
unique new security challenges presented by full-speed container-
based development.

The paper explores the options for container security and looks in more
depth at the role of tooling and the accompanying need for cultural
change. Finally, we take a practical look at what is really needed for
organizations to move towards frictionless ‘security at full speed’,
examining what is needed to move DevSecOps from theory into
practice.

Short-lived and Immutable
Before containers, software environments were bespoke and fractured
affairs. It has always been possible to start servers and virtual machines
from a single ‘golden image’. But, over the course of their active life,
most of them tended to suffer from configuration drift: collecting
modifications, hotfixes, new agents, malware and more.

Virtual machines are mutable by design. And any alterations persist
throughout the long lifecycle of the VM. Reboot it, move it, do anything
short of destroying it; and these changes remain safely stored in that
VM. The separate mutability of each and every VM running in production
creates divergence. And this lack of any consistent state makes it
incredibly challenging to create representative environments for
debugging purposes.

3

By contrast, container images are immutable. The containers created
from them are constantly started and stopped and may only exist for
seconds. You can introduce changes to a container during its lifetime,
however, these do not survive the frequent restarts. And because the
images are both immutable and containers short-lived, this makes it
relatively simple to avoid configuration drift.

The only place that changes can persist for any length of time is within
allocated storage, either in the form of a volume mount or network file
store. These stores should never be used for the application code or
configuration itself, and are easily identifiable.

The container’s immutability makes it far simpler for developers to stand
up a debugging environment, even on a laptop. As long as you have
the same version of the container image as the environment being
debugged, along with any configuration items applied to it, you have
pretty much the same software environment. In addition, you can easily
stand up as many environments as you need, allowing developers and
operations teams to collaborate and troubleshoot with the same point
of reference.

The software development industry has been on a long and storied
quest to eliminate the phrase ‘it worked on my laptop’ from common
usage. Sadly, for many teams, this is still a work in progress and
maintaining a development environment can be hard.

Let us take Python as an example:

Python is enjoying massive growth in popularity, with StackOverflow
trends showing a sustained upward curve of usage. Often, it is used
in the context of Microservices, allowing developers to write and
deploy discrete and focused code. However, this is where problems of
maintaining a development environment become apparent.

While offering a powerful approach to software architecture,
microservices suffer from version and configuration sprawl. Once you
are into the realm of tens, or even hundreds of services, maintaining a
single language runtime becomes challenging. Some new services may
be at the latest version, whereas services written a few months ago may
be using old versions of the runtime or libraries.

Microservices often force software developers to maintain multiple
versions of their chosen language. Tools such as Pyenv help maintain
different versions but can be brittle, complex, and they are rarely
integrated into the final production deployment.

Maintaining a development environment:
‘It worked on my laptop!’

4

Official Python
Image

Official Python
Image

Releasable Image

Install Dev Tools Compile Assets

Test

Commonly known as the multi-stage build, the first container has
the developer tools installed, and builds and tests the code

Once built, a fresh image is used, and the code that
was compiled in the build container is copied across.

Copy Artifacts

Containers offer a more workable solution to using pyenv or other tools to
maintain versions.

A container offers an immutable version of an environment, allowing the
same version of the runtime used in production to be used to develop
software. In some ways, this is nothing new. Tools such as Vagrant offer
the same ability using a virtual machine. Although powerful, Vagrant-style
workflows lack features that containers offer, especially ‘composability’.

A container image can be used as a parent image for another container,
an ability that is difficult—if not outright impossible—to offer with virtual
machine images. Composability allows a workflow like the one below:

In this workflow, developers can pull a strongly versioned container
image for their language, and then add another image layer with their
development tools on top of this. Once they have finished coding, they
can replace their development layer with a testing image and run
comprehensive tests. The same parent container is used, from inception
to deployment.

Image composition also allows developers and operators to collaborate
and work on an identical environment. This collaboration makes a huge
difference to support: completely negating that other, all too common refrain:

‘Now I need an environment to debug this in’

5

Application Code

Code Artifacts & Libraries

Operating System Packages

Secrets & Credentials Data & Other Files

Licenses OS Configuration

 A container image is
a single artifact that
contains everything
required to run an
application or service.

Extending Container Benefits to Security
Many of the strengths that containers offer for both developers and
operators, can also provide serious security benefits. Containers provide
a single versionable artifact that, with the right tools, can be used to
generate a complete bill of materials. Every package, be it software,
libraries or OS is visible within a container image and is immutable. Once
checked and approved, the image will not change.

This immutability also makes it difficult for attackers to gain a toehold
within a containerized infrastructure. Generally, attackers establish
beachheads within compromised servers to launch further attacks. With
containers, that beachhead lasts as long as the container, and when it is
restarted, the container is returned to a fresh state based on its immutable
image. An attacker would have to repeat any attack that allowed them
access and re-establish a base of operations. This costs the attacker time
and gives more opportunities for detection. Although still not as mature
as virtual machines in some aspects of security, the ability to create truly
ephemeral workloads is one advantage containers do offer that virtual
machines do not possess.

Collaboration is at the heart of the container workflow. Operators can
create and stipulate the use of parent images that hardcode their best
practices into every container. Developers can then easily consume
these images to develop and release code: ensuring simple, repeatable,
controlled consistency across development, testing and production
environments. Each team can improve, iterate and develop in tandem
without blocking the other.

6

Containers deliver a technical mechanism that can not only
accommodate but also promote collaboration across previously
disparate teams. And the security team can join the party too. The
collaborative framework containers provide is what drives the mind-shift
needed to turn DevSecOps from a buzzword into a corporate-cultural
reality.

With containers, the security team has a single place to examine the
OS package and configuration, code and dependent libraries. Since a
container can easily be versioned and checksummed, security operatives
can track what issues were found in which artifact. Even better, this
assured immutability gives the security team an easy way to prescribe
secure parent images for both developers and operations to use.

Collaborating around containers provides operators with fantastic new
capabilities when it comes to deployment, opening the door to self-healing,
elastically scalable infrastructure, and multi-cloud deployments. Again,
containers and orchestration are able to turn a buzzword soup into working
infrastructure, realizing the long-time goal for many operations teams.

The Security Challenge
Containers are no panacea and, along with their considerable benefits,
come additional challenges. Many of these challenges are in the form of
security and, ironically, some of the elements that make containers such
a boon are also the very things that can make them a potential security
nightmare.

Introducing Security at Full Speed

Software security relies on transparency at every level. To find and
mitigate security issues and vulnerabilities, they must first be visible.

One key aspect is having the time to detect code changes, evaluate
them and guarantee that they are safe. If this is done manually, speed
becomes a challenge, and containers are all about speed.

Used from development to deployment, containers make it easy to
introduce new libraries and even operating system packages into
production environments. The sheer speed of change can leave security
practitioners standing in the dust, especially if they lack effective
automation.

The velocity of container based development and the speed with which
new external components are added presents a significant new threat.
Supply chain attacks and Zero-day exploits are on the rise, with reports
from Symantec suggesting a growth of 78% in 2019.

7

Increasingly, breaches do not occur because an aggressor has forced
entry to the network, but because a developer inadvertently invited the
attacker through the front door, by including a compromised dependency.

These supply chain attacks can differ in complexity and sophistication:

Attackers can operate through libraries, distributing a compromised
library that is deliberately named with a minor typo; say lftshift rather
than leftshift. So long as the library functions as the developer expects, it is
unlikely they will realize their mistake until it is too late.

Threat actors have even been targeting quieter open source projects,
with less active or badly managed communities. Smaller, quieter projects,
libraries and components can allow bogus contributors to rapidly build
trust and gain the all-important commit rights to add new code. Once
in, attackers have legitimized-access to a ready-made distribution
mechanism for injecting malicious code or vulnerabilities into the project’s
user base.

Up to now, the majority of supply chain attacks have been through the
realm of software libraries. However, with the rapid growth in the popularity
of publicly shared containers, it is only a matter of time before attackers
seize this new and obvious opportunity.

As discussed earlier, composability offers one of the strongest
characteristics of containers for increasing the speed of development. It
allows developers to iterate, building on and refining the work of others,
to get where they want faster. If an existing public container image offers
most of what they need, a developer can use this as the parent image and
then simply apply the changes or additional components they require. In
this way, production containers can often be defined by several layers of
parent images.

However, composability also opens up new possibilities for attackers
to add vulnerabilities to a publicly accessible container. With a well
chosen, popular container, a breach could be spread rapidly into a large
number of targets. In this way, it is easy to see why containers bring fresh
new attack surfaces with them. Even if a container is free of exploitable
software, it may still contain a host of other concerns.

Dedicated Container Best Practice

Containers also require their own security best practices. One important
example is that processes within a container should not be run as the
root user. This sensible precaution helps stop potential malware breaking
out of a container by leveraging higher privileges on the underlying
server. Likewise, it is not recommended to set OS components to update
automatically, but rather to pin containers to use specific software versions.

8

Despite these and other best practices being well documented, most
container tools do not emit warnings if they are not followed. Instead, it
is left to the developer to apply them, either by having an encyclopaedic
knowledge of container best practice or using some form of linting tools.
As a result of this lack of automation, a terrifying proportion of public
images do not follow best practices. This means that, even if internal
developers follow best practice, there is no guarantee that the parent
images they are using implement the same security standards.

Finally, containers can be challenging from a licensing perspective.
Some organizations are averse to the risks and legal liabilities of specific
software licenses.

Where developers can amend the OS tools and packages that ship
with their container, it becomes straightforward for components with
unwanted licenses to creep in. The offending component may not even be
part of the intended package, and could have been dragged in unwittingly
as a dependency of a dependency. Without automation and tooling,
this is a licensing issue that is hard to spot. The only alternative is a time-
consuming manual evaluation of an image.

Containers bring speed, sharing, some fantastic benefits, and potentially,
a container-ship-sized headache for security professionals. Without
automation such as Anchore, a practitioner can never be expected to
keep on top of emerging threats inside containers, without killing the very
benefits they are meant to bring.

Don’t Mess with My Tools
Suite Nothings

On the surface of things, there are two ways to approach the selection
of security tooling. The first approach is to look at a comprehensive suite
or ‘ecosystem’. This ecosystem will typically offer broad functionality and
claim many amazing and integrated benefits. Buying into an ecosystem is
simple from the point of view of purchasing and installation: one supplier,
one support line, one tool, and a straightforward set of packages to
maintain. If the right price can be agreed upon, this might seem like the
logical choice. But stop for a minute...

We all know the sacrosanct nature of someone’s tools. If you have ever
worked together with skilled tradespeople, artisans and craftspeople; if
you have ever had a father with a shed; you know, you just don’t mess with
someone’s tools. A bad worker may blame their tools, but not nearly as
much as a proud worker will blame you, if you tamper with their favoured
widget or gadget.

9

Choosing your own tools is a basic human right of anyone who takes pride
in their job. We all choose our work tools to fit with our idiosyncrasies and
favoured way of working. And, over time, we even refine our ways of working
around our tools. In short, our tools can almost become an extension of our
professional selves.

Developers are no different. And why should they be?

The reality is that overarching product suites rarely deliver on their promise,
tending to compromise on features to offer broader scope. Compromise
is inevitable when you have a product that offers, for instance, an artifact
store, security scanning, CI/CD pipeline, container auditing and more. Not all
features can receive the same level of development attention, and outside of
the core product, features can be cursory. All too often, features can even be
added in situations where it may make no sense in that workflow.

The Swiss Army knife is a tediously overused metaphor in the IT industry. But
if you were to hand a comprehensive, top-of-the-range Victorinox to an
electrician and ask them to rewire your kitchen with it...?

Moreover, because larger security suites are integrated, the products within
the ecosystem are typically rigidly integrated with each other. Adding in a
third-party product to the ecosystem is normally difficult and external tools
can rarely be integrated fully. So, developers really are stuck with just our little
red helvetic friend.

When this impact starts to reach beyond security into the developer’s own
toolchain, things move beyond a joke. Security software has a profound
impact on every team that interacts with it. We no longer live in a world
where you buy some software in black and yellow striped packaging, install it,
and forget about it.

Dev Environments CI/CD Systems Image Registries K8S Deployments

10

Security must involve every part of the software development lifecycle. And
effective security tools may need to interact with each development tool, and
every developer, involved along the way. This can force changes to organizational
workflows as a result: it is often seen as easier to follow the path of least resistance
and use the entire ecosystem than retaining tools that cannot integrate with them.

This is where security really starts ‘messing with the developers’ tools’.

And while we may joke, these changes to the development process can be jarring
if they replace generally accepted and liked working practices. It can create
resentment between teams and it can easily be perceived as one team imposing
poor working conditions on another: generally, either the security or operations
teams imposing on the developers.

This not only causes ill feelings, but can dramatically reduce productivity, both during
and after the rollout of the new ecosystem. Moreover, like any worker at the top of
their game, real developer talent will look for roles where they have the respect and
freedom to choose their own tools and shape their working environment. Take away
this respect and freedom, and companies will inevitably find it harder to attract and
retain talented individuals.

In addition, many of the larger tool suites simply do not integrate well with containers
and the pace at which they work. Security software broadly works in two modes;
inspection or gating. On their own, tools in inspection mode are near-useless.
They rely entirely on the user understanding the inspection data produced by the
tool, on their understanding of the relevance of this data in the context of their
organization’s security policy, and on the user having the time and inclination to take
the appropriate action. Conversely, tools in gating mode can be massively disruptive
if they are poorly implemented.

Often, security-focused tool suites are designed with audit, gatekeeping and
operational stability in mind. They either side-line or outright ignore the development
process. This massively inflates the iteration loop that developers are forced to
undertake, and can cause serious harm to the developer cadence.

To be effective, tools must offer inspection and gating, with multiple integration
points along the development chain. However, they must do this in such a way as not
to disrupt the development cadence. It is vital that security tools do not waste the
hard-won advantages that DevOps working practices and containers have brought.

11

The New Role for Best of Breed

Few would dispute that the superior alternative to the suite or ecosystem is to
take the best tools for each part of the development cycle and form them into an
optimal toolchain. However, in the past, this approach has often been perceived
as too costly and time-consuming: requiring the teams using these tools to install
and manage complex software and solve issues integrating them.

Containerization has changed this. Where disparate tools would once have been
massively complex to install, run and maintain, they can now be deployed using a
container. Kubernetes is an excellent example of this approach. Each Kubernetes
distribution is a collection of tools fulfilling the Kubernetes API, and even the
underlying networking layer can be swapped out.

Kubernetes ‘operators’ are the next evolution in this process, offering to abstract
complexity even further. They allow Kubernetes administrators to describe the
configuration for different products using Custom Resource Definitions. It is no
longer the case that creating your tooling needs to be involved, expensive or hard
to maintain.

Creating a tailored security toolchain allows you to select the best tool for
each aspect of security. Anchore has been designed to fill the role of container
security scanning and policy enforcement. It is not a static code analyzer, nor a
replacement for network security tools. It is a best of breed container scanning
tool, incorporating inspection and gating, that can be easily integrated into
workflows and used alongside tools that specialize in other aspects of security.

Anchore is fully automatable, allowing it to be integrated with practically any
working practice, toolset and step of the software lifecycle. Anchore does not
interrupt processes and demand instant change. It fits around what is there and
encourages subtle changes over time, as developers and security admins alike
learn what does and does not work. Security becomes a frictionless extension of
existing development techniques.

Frictionless Security
For security to become frictionless, the security team must make allies of everyone
who takes part in the development of software, allowing them to quickly and easily
identify and remediate security issues.

By giving development teams the information they need to fix security issues early
on in the development process, it frees up the security team to focus their time on
more complex and more interesting aspects of security. Catching issues quickly
and at the right part of the software lifecycle, ensures there is no tedious ‘grunt
work’ left to be done. Security at full speed spreads the load, allowing developers
to feel part of the security picture, rather than having it imposed upon them.

Just as operations benefit from the greater levels of collaboration and openness
found in DevOps, so can security. This increasingly collaborative approach has led
to the creation of DevSecOps as an extension of the DevOps methodology.

12

Much like its progenitor, DevSecOps pushes left, ensuring that Security, as well
as Operations, is considered from the very beginning of the development
lifecycle. Much like DevOps, DevSecOps is a cultural development, but it is
being enabled by containerization and CI/CD. DevSecOps is driven by the
adoption of new automation and tooling that helps foster collaboration.

Anchore is a security tool that has been built for DevSecOps and which
encourages the necessary cultural change. It is focused on making security
frictionless, does not require constant maintenance and, once implemented,
fades into the background.

By contrast, the older generation of security tools cannot be expected to fit
with this newer security paradigm. Awkwardly retrofitting tools to a newer
generation of DevSecOps processes will almost inevitably create friction,
standing in the way of collaboration and leaving DevSecOps out of reach, as
an ideal rather than a reality.

Frictionless security demands tools that do not break the development flow:
no use of custom GUIs or other out-of-band ways to deliver insight and
information. Where possible, security tools must melt into the background,
simply enriching existing developer alerts to add detailed security information.
Flexibility, automation and ease of integration with multiple third-party
developer tools are the key. This allows security insight to be taken into
account and implemented across different stages of the CI/CD pipeline and in
every part of the software development lifecycle.

Anchore is driven by security policy expressed as code. Policies allow Anchore
to be both centralized and decentralized at the same time.

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Sourcing Development CI/CD Production

Traditional security relies on one-off
scans & runtime anomaly detection

DevSecOps processes incorporate
continuous scanning and remediation

13

Policy is written and maintained by security specialists, providing them
with the flexibility to define different and context-appropriate levels of
enforcement. These policies are then consumed by Anchore wherever it is
run: be that the developer’s laptop, or a Kubernetes cluster. Policies are a
powerful way to deliver a nuanced approach to enforcement, creating a
frictionless developer experience without endangering security in production
environments.

Security at full speed means that security should never slow down or
block development, but equally, development imperatives should never
compromise security. These two tensions can be balanced using a
DevSecOps approach and pushing ownership of security left. In the case of
Anchore, this means using it as close to the developer as possible: integrating
security feedback at multiple points across the development cycle, and using
appropriate policies to inform, but not block development.

Security at Every Layer
Integrating Anchore with developer workflows means integrating with their
local toolings such as their IDE, the CI pipeline, or both. Anchore’s flexible policy
framework then allows for increasing levels of both scrutiny and enforcement
as artifacts pass through the development pipeline.

On the desktop, a lightweight scan can be used to catch top-level issues and
to check that containers are using best practices. This immediate feedback
is comparable to a developer running a unit test. It can be integrated into the
workflow either using a make file, IDE integration, or tools such as Githooks. This
integration allows the developer to catch high-level issues right inside their
workflow as they are working, without making them wait for a report.

Policies become a helpful, non-invasive tool for education, promoting best
practice for secure development. The comfort of the tooling effectively trains
the development team to work more securely from the outset.

Once a new software change is ready, it can be pushed into the CI/CD
pipeline. Here, a second set of policies can be set to run a more detailed scan,
looking deeper into software libraries, and integrating with other tools that can
enrich the security picture. Rather than blocking further merging activity, the
policy can be set to report security issues.

?

?

?

? ?

? ?

?

? ?

?

?

?

?

?

?

? ?

?

?

?

CI/CD system Image Registry Deployment

Prevent dangerous image
builds from succeeding

14

In this way, the code can be further tested without the need for immediate
action. At the end of the pipeline, the developer has an actionable report of
any security issues, as well as any integration problems that may have been
encountered. The developer receives the same familiar testing feedback in
the way they always have, but with added details around security.

Meanwhile, the security team can continuously update the developer policy,
allowing them to fine-tune and adapt the issues that are surfaced at each
point of development. The developers, in turn, don’t need to be aware of this;
from their point of view, the testing is being seamlessly updated to ensure
their code is properly scanned for any issues.

Once the deployment cycle is finished, the developer can push their code
into a container repository. Here, Anchore can be configured with a third set
of policies, performing deep scanning and auditing of the entire container
registry. As new threats emerge, Anchore is able to report on existing assets
within the registry without requiring a complete rescan. Instead, it utilises the bill
of materials stored from previous scans and checks if the new vulnerabilities
are present in the registry, giving security teams automated feedback on their
security posture, and allowing them to take action to remediate any issues.

Finally, a fourth level of policies can be applied at run time using the
Kubernetes ingress controller. The ingress controller is a perpetual watchdog
that runs within the Kubernetes cluster, inspecting every container at launch
and checking against a policy what actions to take if vulnerabilities are found.

?

?

?

?

?

?

?

?

?

?

?

? ?

?

?

?

?

?

?

?

?

?

?

??

?

?

?

?

?

?

?

?

CI/CD system Image Registry Deployment

Stop publication and reuse of
non-conforming images

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

?

?

?

? ? ?

?

?

? ?

?

?

?

?

? ?

?

?

?

?

?

?

?

?

? ?

?

?

?

?

?

? ?

?

?

?

?

?

?

?

?

? ?

?

?

?

?

?

?

? ?

?

?

?

?

?

CI/CD system Image Registry Deployment

Prevent deployment using a k8s
admission controller

15

These controller policies can then be further tuned and refined to fit the
security posture of a given environment. In a test cluster, it may be enough
to scan and flag any issues found with a container, but allow it to launch. This
approach enables security teams to work with developers to fix issues, but not
act as a blocker for further functional testing or performance testing. The pre-
production cluster can ensure that only containers that have been scanned
in the test environment are allowed to launch.

For production environments, policies can be set at their most rigorous. Here,
only whitelisted containers that have previously been scanned, and passed
tests should be allowed to launch. This severely hampers an attacker’s ability
to run arbitrary workloads in production. It applies a significant amount of
extra runtime security, without hindering the velocity of developers.

At the same time as delivering a frictionless relationship with developers,
Anchore also allows the security team to collaborate with the broader
business. Often, security teams are deeply involved with wider business
auditing and are tasked with supplying reports on current security issues,
possible license issues, compliance levels and any recent security activities.
Anchore produces reports in a variety of easily ingestible formats such as
CSV. This can be integrated into existing workflows, giving the security team
the freedom to add context and information around the data, rather than
spending all of their time collating it.

16

Conclusion
Containers have finally enabled organizations to realize the DevOps and CI/
CD vision. And in doing so, this has fundamentally changed all aspects of the
software lifecycle. Within the context of this root change, existing software
security tools cannot just be marginally tweaked to fit.

Perhaps the greatest overarching change, and the driver for a large
proportion of enterprise adoption of containers, is in the dramatic increase
in cycle speeds from development to implementation. It is therefore vital
that software security solutions can handle the very real implications of this
increased development speed and, equally, that they do not diminish or
destroy the very speed and efficiency gains that containers have provided.

Effective container security is about much more than scanning the contents
of a container. It has to be about integrating security policy and insight along
the development cycle - from start to finish. In this way, container security
is both mandating, and partly enabling, DevSecOps as the next evolution in
enterprise CI/CD software development.

Security at full speed pushes security left and allows software development
teams to fully enable the DevSecOps approach. Rather than making Security
front and center, it makes it an integrated and seamless part of existing
software development workflows. DevSecOps needs to integrate security
insight and information into the developers’ toolchain, not burden them with
more tools.

17

For DevSecOps to work, it must be implemented with respect for the
developers’ ways of working. Container security tools cannot force screen
hopping to out-of-band applications, require cross-collation of information
between tools, or cause disruptive blockages in the existing DevOps workflow.
Organizations need security tools that can be fully automated, using an API
or command-line tool, so that they can be integrated into any development
workflow and with any tool. This capability ensures that software development
teams can use security insight and information within their existing workflows.

By integrating security information, in context, throughout the developer
pipeline, developers can be guided to implement best practice as part of
their normal processes. Implementing security policy becomes the new
development norm. And as developer practices improve, policies can even
be hardened, taking the organizations from meeting security guidelines and
regulations, towards exceeding them.

Containers demand a new approach to software security. But adopting
this new approach dramatically increases the efficiency of security
implementation, in the same way that DevOps has increased efficiency in
development and IT operations efficiency. By smoothing interaction and
removing much of the historical friction between developers and security
teams, this new model of DevSecOps or security at full speed, allows
organizations to achieve more and raise security standards to new levels.

About Anchore					
Based out of Santa Barbara, California and Northern Virginia, Anchore
provides a set of tools that provide visibility, transparency, and control
of your container environment. Anchore aims to secure container
workloads at scale without impacting deployment velocity. Our Anchore
Professional Services team helps users leverage Anchore to analyze,
inspect, scan, and apply custom policies to container images within
custom CI/CD pipelines.

envelope info@anchore.com

globe anchore.com

