Anchore at Billington CyberSecurity Summit: Automating Defense in the AI Era

Are you gearing up for the 15th Annual Billington CyberSecurity Summit? So are we! The Anchore team will be front and center in the exhibition hall throughout the event, ready to showcase how we’re revolutionizing cybersecurity in the age of AI.

This year’s summit promises to be a banger, highlighting the evolution in cybersecurity as the latest iteration of AI takes center stage. While large language models (LLMs) like ChatGPT have been making waves across industries, the cybersecurity realm is still charting its course in this new AI-driven landscape. But make no mistake – this is no time to rest on our laurels.

As blue teams explore innovative ways to harness LLMs, cybercriminals are working overtime to weaponize the same technology. If there’s one lesson we’ve learned from every software and AI hype cycle: automation is key. As adversaries incorporate novel automations into their tactics, defenders must not just keep pace—they need to get ahead.

At Anchore, we’re all-in with this strategy. The Anchore Enterprise platform is purpose-built to automate and scale cybersecurity across your entire software development lifecycle. By automating continuous vulnerability scanning and compliance in your DevSecOps pipeline, we’re equipping warfighters with the tools they need to outpace adversaries that never sleep.

Ready to see how Anchore can transform your cybersecurity posture in the AI era? Stop by our booth for a live demo. Don’t miss this opportunity to stay ahead of the curve—book a meeting (below) with our team and take the first step towards a more secure tomorrow.

Anchore at the Billington CyberSecurity Summit

Date: September 3–6, 2024

Location: The Ronald Reagan Building and International Trade Center in Washington, DC

Our team is looking forward to meeting you! Book a demo session in advance to ensure a preferred slot.

Anchore’s Showcase: DevSecOps and Automated Compliance

We will be demonstrating the Anchore Enterprise platform at the event. Our showcase will focus on:

  1. Software Composition Analysis (SCA) for Cloud-Native Environments: Learn how our tools can help you gain visibility into your software supply chain and manage risk effectively.
  2. Automated SBOM Generation and Management: Discover how Anchore simplifies the creation and maintenance of Software Bills of Materials (SBOMs), the foundational component in software supply chain security.
  3. Continuous Scanning for Vulnerabilities, Secrets, and Malware: See our advanced scanning capabilities in action, designed to protect your applications across the DevSecOps pipeline or DoD software factory.
  4. Automated Compliance Enforcement: Experience how Anchore can streamline compliance with key standards such as cATO, RAISE 2.0,  NIST, CISA, and FedRAMP, saving time and reducing human error.

We invite all attendees to visit our booth to learn more about how Anchore’s DevSecOps and automated compliance solutions can enhance your organization’s security posture in the age of AI and cloud computing.

Event Highlights

Still on the fence about whether to attend? Here is a quick run-down to help get you off of the fence. This year’s summit, themed “Advancing Cybersecurity in the AI Age,” will feature more than 40 sessions and breakouts, covering critical topics such as:

  • The increasing impact of artificial intelligence on cybersecurity
  • Cloud security challenges and solutions
  • Proactive approaches to technical risk management
  • Emerging cyber risks and defense strategies
  • Data protection against breaches and insider threats
  • The intersection of cybersecurity and critical infrastructure

The event will showcase fireside chats with top government officials, including FBI Deputy Director Paul Abbate, Chairman of the Joint Chiefs of Staff General CQ Brown, Jr., and U.S. Cyber Command Commander General Timothy D. Haugh, among others.

Next Steps and Additional Resources

Join us at the Billington Cybersecurity Summit to network with industry leaders, gain valuable insights, and explore innovative technologies that are shaping the future of cybersecurity. We look forward to seeing you there!

If you are interested in the Anchore Enterprise platform and can’t wait till the show, here are some resources to help get you started:

Learn about best practices that are setting new standards for security in DoD software factories.

Anchore Awarded DoD ESI DevSecOps Phase II Agreement

The Department of Defense (DoD) Enterprise Software Initiative (ESI) has awarded Anchore inclusion in its DevSecOps program, which is part of the ESI’s DevSecOps Phase II enterprise agreements.

The DoD ESI’s main objective is to streamline the acquisition process for software and services across the DoD, in order to gain significant cost savings and improve efficiency. Admittance into the ESI program validates Anchore’s commitment to be a trusted partner to the DoD, delivering advanced container vulnerability scanning as well as SBOM management solutions that meet the most stringent compliance and security requirements.

Anchore’s inclusion in the DoD ESI DevSecOps Phase II agreement is a testament to our commitment to delivering cutting-edge software supply chain security solutions. This milestone enables us to more efficiently support the DoD’s critical missions by providing them with the tools they need to secure their software development pipelines. Our continued partnership with the DoD reinforces Anchore’s position as a trusted leader in SBOM-powered DevSecOps and container security.

—Tim Zeller, EVP Sales & Marketing

The agreements also included DevSecOps luminaries Hashicorp and Rancher Government as well as Cloudbees, Infoblox, GitLab, Crowdstrike, F5 Networks; all are now part of the preferred vendor list for all DoD missions that require cybersecurity solutions, generally, and software supply chain security, specifically.

Anchore is steadily growing their presence on federal contracts and catalogues such as Iron Patriot & Minerva, GSA, 2GIT, NASA SEWP, ITES and most recently also JFAC (Joint Federated Assurance Center).

What does this mean?

Similar to the GSA Advantage marketplace, DoD missions can now procure Anchore through the fully negotiated and approved ESI Agreements on the Solutions for Enterprise-Wide Procurement (SEWP) Marketplace. 

Anchore’s History with DoD

This award continues Anchore’s deepening relationship with the DoD. Starting in 2020, the DoD has vetted and approved Anchore’s container vulnerability scanning tools. Anchore is named in both the DoD Container Image Creation and Deployment Guide and the DoD Container Hardening Process Guide as recommended solutions.

The same year, Anchore was selected by the US Air Force’s Platform One to become the software supply chain vendor to implement the best practices in the above guides for all software built on the platform. Read our case study on how Anchore partnered with Platform One to build the premier DevSecOps platform for the DoD.

The following year, Anchore won the Small Business Innovation Research (SBIR) Phase III contract with Platform One to integrate directly into the Iron Bank container image process. If your image has achieved Iron Bank certification it is because Anchore’s solution has given it a passing grade. Read more about this DevSecOps success story in our case study with the Iron Bank.

Due to the success of Platform One within the US Air Force, in 2022 Anchore partnered with the US Navy to secure the Black Pearl DevSecOps platform. Similar to Platform One, Black Pearl is the go-to standard for modern software development within the Department of the Navy (DON) software development.

As Anchore continued to expand its relationship with the DoD and federal agencies, its offerings became available for purchase through the online government marketplaces and contracts such as GSA Advantage and Second Generation IT Blanket Purchase Agreements (2GIT), NASA SEWP, Iron Patriot/Minerva, ITES and JFAC. The ESI’s DevSecOps Phase II award was built on the back of all of the previous success stories that came before it. 

Achieving ATO is now easier with the inclusion of Anchore into the DoD ESI. Read our white paper on DoD software factory best practices to reach cATO or RAISE 2.0 compliance in days versus months.

We advise on best practices that are setting new standards for security and efficiency in DoD software factories, such as: Hardening container images, automation for policy enforcement and continuous monitoring for vulnerabilities.

Anchore Enterprise 5.8 Adds KEV Enrichment Feed

Today we have released Anchore Enterprise 5.8, featuring the integration of the U.S. Cybersecurity and Infrastructure Security Agency’s (CISA) Known Exploited Vulnerabilities (KEV) catalog as a new vulnerability feed.

Previously, Anchore Enterprise matched software libraries and frameworks inside applications against vulnerability databases, such as, National Vulnerability Database (NVD), the GitHub Advisory Database or individual vendor feeds. With Anchore Enterprise 5.8, customers can augment their vulnerability feeds with the KEV catalog without having to leave the dashboard. In addition, teams can automatically flag exploitable vulnerabilities as software is being developed or gate build artifacts from being released into production. 

Before we jump into what all of this means, let’s take a step back and get some context to KEV and its impact on DevSecOps pipelines.

What is CISA KEV?

The KEV (Known Exploited Vulnerabilities) catalog is a critical cybersecurity resource maintained by the U.S. Cybersecurity and Infrastructure Security Agency (CISA). It is a database of exploited vulnerabilities that is current and active in the wild. While addressing these vulnerabilities is mandatory for U.S. federal agencies under Binding Operational Directive 22-01, the KEV catalog serves as an essential public resource for improving cybersecurity for any organization.

The primary difference between CISA KEV and a standard vulnerability feed (e.g., the CVE program) are the adjectives, “actively exploited”. Actively exploited vulnerabilities are being used by attackers to compromise systems in real-time, meaning now. They are real and your organization may be standing in the line of fire, whereas CVE lists vulnerabilities that may or may not have any available exploits currently. Due to the imminent threat of actively exploited vulnerabilities, they are considered the highest risk outside of an active security incident.

The benefits of KEV enrichment

The KEV catalog offers significant benefits to organizations striving to improve their cybersecurity posture. One of its primary advantages is its high signal-to-noise ratio. By focusing exclusively on vulnerabilities that are actively being exploited in the wild, the KEV cuts through the noise of countless potential vulnerabilities, allowing developers and security teams to prioritize their efforts on the most critical and immediate threats. This focused approach ensures that limited resources are allocated to addressing the vulnerabilities that pose the greatest risk, significantly enhancing an organization’s security efficiency.

Moreover, the KEV can be leveraged as a powerful tool in an organization’s development and deployment processes. By using the KEV as a trigger for build pipeline gates, companies can prevent exploitable vulnerabilities from being promoted to production environments. This proactive measure adds an extra layer of security to the software development lifecycle, reducing the risk of deploying vulnerable code. 

Additionally, while adherence to the KEV is not yet a universal compliance requirement, it represents a security best practice that forward-thinking organizations are adopting. Given the trend of such practices evolving into compliance mandates, integrating the KEV into security protocols can be seen as a form of future-proofing, potentially easing the transition if and when such practices inevitably become compliance requirements.

How Anchore Enterprise delivers KEV enrichment

With Anchore Enterprise, CISA KEV is now a vulnerability feed similar to any other data feed that gets imported into the system. Anchore Enterprise can be configured to pull this directly from the source as part of the deployment feed service.

To make use of the new KEV data, we have an additional rule option in the Anchore Policy Engine that allows a STOP or WARN to be configured when a vulnerability is detected that is on the KEV list. When any application build, registry store or runtime deploy occurs, Anchore Enterprise will evaluate the artifiact’s SBOM against the security policy and if the SBOM has been annotated with a KEV entry then the Anchore policy engine can return a STOP value to inform the build pipeline to fail the step and return the KEV as the source of the violation.

To configure the KEV feed as a trigger in the policy engine, first select vulnerabilities as the gate then kev list as a trigger. Finally choose an action.

Anchore Enterprise dashboard policy engine rule set configuration showing vulnerabilities as the gate value and the CISA KEV catalog as the trigger value.

After you save the new rule, you will see the kev list rule as part of the entire policy.

Anchore Enterprise 5.8 policy engine dashboard showing all rules for the default policy including the CISA KEV catalog rule at the top (highlighted in the red square).

After scanning a container with the policy that has the kev list rule in it, you can view all dependencies that match the kev list vulnerability feed.

Anchore Enterprise 5.8 vulnerability scan report with policy enrichment and policy actions. All software dependencies are matched against the CISA KEV catalog of known exploitable vulnerabilities and the assigned action is reported in the dashboard.

Next Steps

To stay on top of our releases, sign-up for our monthly newsletter or follow our LinkedIn account. If you are already an Anchore customer, please reach out to your account manager to upgrade to 5.8 and gain access to KEV support. We also offer a 15 day free trial to get hands on with Anchore Enterprise or you can reach out to us for a guided tour.

A Guide to FedRAMP in 2024: FAQs & Key Takeaways

This blog post has been archived and replaced by the supporting pillar page that can be found here: https://anchore.com/wp-admin/post.php?post=987473983&action=edit

The blog post is meant to remain “public” so that it will continue to show on the /blog feed. This will help discoverability for people browsing the blog and potentially help SEO. If it is clicked on it will automatically redirect to the pillar page.

DevSecOps Evolution: How DoD Software Factories Are Reshaping Federal Compliance

Anchore’s Vice President of Security, Josh Bressers recently did an interview with Fed Gov Today about the role of automation in DevSecOps and how it is impacting the US federal government. We’ve condensed the highlights of the interview into a snackable blog post below.

Automation is the foundation of DevSecOps

Automation isn’t just a buzzword but is actually the foundation of DevSecOps. It is what gives meaning to marketing taglines like “shift left”. The point of DevSecOps is to create automated workflows that provide feedback to software developers as they are writing the application. This unwinds the previous practice of  artificially grouping all of the “compliance” or “security” tasks into large blocks at the end of the development process. The challenge with this pattern is that it delays feedback and design decisions are made that become difficult to undo after development has completed. By inverting the narrative and automating feedback as design decisions are made, developers are able to prevent compliance or security issues before they become deeply embedded into the software.

DoD Software Factories are leading the way in DevSecOps adoption

The US Department of Defense (DoD) is at the forefront of implementing DevSecOps through their DoD software factory model. The US Navy’s Black Pearl and the Air Force’s Platform One are perfect examples of this program. These organizations are leveraging automation to streamline compliance work. Instead of relying on manual documentation ahead of Authority to Operate (ATO) reviews, automated workflows built directly into the software development pipeline provide direct feedback to developers. This approach has proven highly effective, Bressers emphasizes this in his interview:

It’s obvious why the DoD software factory model is catching on. It’s because they work. It’s not just talk, it’s actually working. There’s many organizations that have been talking about DevSecOps for a long time. There’s a difference between talking and doing. Software factories are doing and it’s amazing.

—Josh Bressers, VP of Security, Anchore

Benefits of compliance automation

By giving compliance the same treatment as security (i.e., automate all the things), tasks that once took weeks or even months, can now be completed in minutes or hours. This dramatic reduction in time-to-compliance not only accelerates development cycles but also allows teams to focus on collaboration and solution delivery rather than getting bogged down in procedural details. The result is a “shift left” approach that extends beyond security to compliance as well. When compliance is integrated early in the development process the benefits cascade down the entire development waterfall.

Compliance automation is shifting the policy checks left into the software development process. What this means is that once your application is finished; instead of the compliance taking weeks or months, we’re talking hours or minutes.

—Josh Bressers, VP of Security, Anchore

Areas for improvement

While automation is crucial, there are still several areas for improvement in DevSecOps environments. Key focus areas include ensuring developers fully understand the automated processes, improving communication between team members and agencies, and striking the right balance between automation and human oversight. Bressers emphasizes the importance of letting “people do people things” while leveraging computers for tasks they excel at. This approach fosters genuine collaboration and allows teams to focus on meaningful work rather than simply checking boxes to meet compliance requirements.

Standardizing communication workflows with integrated developer tools

Software development pipelines are primarily platforms to coordinate the work of distributed teams of developers. They act like old-fashioned switchboard operators that connect one member of the development team to the next as they hand-off work in the development production line. Leveraging developer tooling like GitLab or GitHub standardizes communication workflows. These platforms provide mechanisms for different team members to interact across various stages of the development pipeline. Teams can easily file and track issues, automatically pass or fail tests (e.g., compliance tests), and maintain a searchable record of discussions. This approach facilitates better understanding between developers and those identifying issues, leading to more efficient problem-solving and collaboration.

The government getting ahead of the private sector: an unexpected narrative inversion

In a surprising turn of events, Bressers points out that government agencies are now leading the way in DevSecOps implementation by integrating automated compliance. Historically often seen as technologically behind, federal agencies, through the DoD software factory model, are setting new standards that are likely to influence the private sector. As these practices become more widespread, contractors and private companies working with the government will need to adapt to these new requirements. This shift is evident in recent initiatives like the SSDF attestation questionnaire and White House Executive Order (EO) 14028. These initiatives are setting new expectations for federal contractors, signaling a broader move towards making compliance a native pillar of DevSecOps.

This is one of the few instances in recent memory where the government is truly leading the way. Historically the government has often been the butt of jokes about being behind in technology but these DoD software factories are absolutely amazing. The next thing that we’re going to see is the compliance expectations that are being built into these DoD software factories will seep out into the private sector. The SSDF attestation and the White House Executive Order are only the beginning. Ironically my expectation is everyone is going to have to start paying attention to this, not just federal agencies.

—Josh Bressers, VP of Security, Anchore

Next Steps

If you’re interested to learn more about how to future-proof your software supply chain with compliance automation via the DoD software factory model, be sure to read our white paper.

If you’d like to hear the interview in full, be sure to watch it on Fed Gov Today’s Youtube channel.

High volume image scanning and vulnerability management at the Iron Bank (Platform One)

The Iron Bank provides Platform One and any US Department of Defense (DoD) agency with a hardened and centralized container image repository that supports the end-to-end lifecycle needed for secure software development. Anchore and the Iron Bank have been collaborating since 2020 to balance deployment velocity, and policy compliance while maintaining rigorous security standards and adapting to new security threats. 

The Challenge

The Iron Bank development team is responsible for the integrity and security of 1,800 base images that are provided to build and create software applications across the DoD. They face difficult tasks such as:

  • Providing hardened components for downstream applications across the DoD
  • Meeting rigorous security standards crucial for military systems
  • Improving deployment frequency while maintaining policy compliance
  • Reducing the burden of false positives on the development team

Camdon Cady, Chief Technology Officer at Platform One:

People want to be security minded, and they want to do the right thing. But what they really want is tooling that helps them to do that with all the necessary information in one place. That’s why we looked to Anchore for help.

The Solution

Anchore’s engineering team is deeply embedded with the Iron Bank infrastructure and development team to improve and maintain DevSecOps standards. Anchore Enterprise is the software supply chain security tool of choice as it provides: 

The Results: Sustainable security at DevOps speed

The partnership between Iron Bank and Anchore has yielded impressive results:

  • Reduced False Positives: The introduction of an exclusion feed captured over 12,000 known false positives, significantly reducing the security assessment load.
  • Improved SBOM Accuracy: Custom capabilities like SBOM Hints and SBOM Corrections allow for more precise component identification and vulnerability mapping.
  • Standardized Compliance: A jointly developed custom policy enforces the DoD Container Hardening requirements consistently across all images.
  • Enhanced Scanning Capabilities: Additions like time-based allowlisting, content hints, and image scanning have expanded Iron Bank’s security coverage.
  • Streamlined Processes: The standardized scanning process adheres to the DoD’s Container Hardening Guide while delivering high-quality vulnerability and compliance findings.

Even though security is important for all organizations, the stakes are higher for the DoD. What we need is a repeatable development process. It’s imperative that we have a standardized way of building secure software across our military agencies.

Camdon Cady, Chief Technology Officer at Platform One

Download the full case study to learn more about how Anchore Enterprise can help your organization achieve a proactive security stance while maintaining development velocity.

How Infoblox Scaled Product Security and Compliance with Anchore Enterprise

In today’s fast-paced software development world, maintaining the highest levels of security and compliance is a daunting challenge. Our new case study highlights how Infoblox, a leader in Enterprise DDI (DNS, DHCP, IPAM), successfully scaled their product security and compliance efforts using Anchore Enterprise. Let’s dive into their journey and the impressive results they achieved.

The Challenge: Scaling security in high-velocity Environments

Infoblox faced several critical challenges in their product security efforts:

  • Implementing “shift-left” security at scale for 150 applications developed by over 600 engineers with a security team of 15 (a 40:1 ratio!)
  • Managing vulnerabilities across thousands of containers produced monthly
  • Maintaining multiple compliance certifications (FedRAMP, SOC 2, StateRAMP, ISO 27001)
  • Integrating seamlessly into existing DevOps workflows

“When I first started, I was manually searching GitHub repos for references to vulnerable libraries,” recalls Sukhmani Sandhu, Product Security Engineer at Infoblox. This manual approach was unsustainable and prone to errors.

The Solution: Anchore Enterprise

To address these challenges, Infoblox turned to Anchore Enterprise to provide:

  • Container image scanning with low false positives
  • Comprehensive vulnerability and CVE management
  • Native integrations with Amazon EKS, Harbor, and Jenkins CI
  • A FedRAMP, SOC 2, StateRAMP, and ISO compliant platform

Chris Wallace, Product Security Engineering Manager at Infoblox, emphasizes the importance of accuracy: “We’re not trying to waste our team or other team’s time. We don’t want to report vulnerabilities that don’t exist. A low false-positive rate is paramount.

Impressive Results

The implementation of Anchore Enterprise transformed Infoblox’s product security program:

  • 75% reduction in time for manual vulnerability detection tasks
  • 55% reduction in hours allocated to retroactive vulnerability remediation
  • 60% reduction in hours spent on compliance tasks
  • Empowered the product security team to adopt a proactive, “shift-left” security posture

These improvements allowed the Infoblox team to focus on higher-value initiatives like automating policy and remediation. Developers even began self-adopting scanning tools during development, catching vulnerabilities before they entered the build pipeline.

“We effectively had no tooling before Anchore. Everything was manual. We reduced the amount of time on vulnerability detection tasks by 75%,” says Chris Wallace.

Conclusion: Scaling security without compromise

Infoblox’s success story demonstrates that it’s possible to scale product security and compliance efforts without compromising on development speed or accuracy. By leveraging Anchore Enterprise, they transformed their security posture from reactive to proactive, significantly reduced manual efforts, and maintained critical compliance certifications.

Are you facing similar challenges in your organization? Download the full case study and take the first step towards a secure, compliant, and efficient development environment. Or learn more about how Anchore’s container security platform can help your organization.

Introduction to the DoD Software Factory

In the rapidly evolving landscape of national defense and cybersecurity, the concept of a Department of Defense (DoD) software factory has emerged as a cornerstone of innovation and security. These software factories represent an integration of the principles and practices found within the DevSecOps movement, tailored to meet the unique security requirements of the DoD and Defense Industrial Base (DIB). 

By fostering an environment that emphasizes continuous monitoring, automation, and cyber resilience, DoD Software Factories are at the forefront of the United States Government’s push towards modernizing its software and cybersecurity capabilities. This initiative not only aims to enhance the velocity of software development but also ensures that these advancements are achieved without compromising on security, even against the backdrop of an increasingly sophisticated threat landscape.

Building and running a DoD software factory is so central to the future of software development that “Establish a Software Factory” is the one of the explicitly named plays from the DoD DevSecOps Playbook. On top of that, the compliance capstone of the authorization to operate (ATO) or its DevSecOps infused cousin the continuous ATO (cATO) effectively require a software factory in order to meet the requirements of the standard. In this blog post, we’ll break down the concept of a DoD software factory and a high-level overview of the components that make up one.

What is a DoD software factory?

A Department of Defense (DoD) Software Factory is a software development pipeline that embodies the principles and tools of the larger DevSecOps movement with a few choice modifications that conform to the extremely high threat profile of the DoD and DIB. It is part of the larger software and cybersecurity modernization trend that has been a central focus for the United States Government in the last two decades.

The goal of a DoD Software Factory is aimed at creating an ecosystem that enables continuous delivery of secure software that meet the needs of end-users while ensuring cyber resilience (a DoD catchphrase that emphasizes the transition from point-in-time security compliance to continuous security compliance). In other words, the goal is to leverage automation of software security tasks in order to fulfill the promise of the DevSecOps movement to increase the velocity of software development.

What is an example of a DoD software factory?

Platform One is the canonical example of a DoD software factory. Run by the US Air Force, it offers both a comprehensive portfolio of software development tools and services. It has come to prominence due to its hosted services like Repo One for source code hosting and collaborative development, Big Bang for a end-to-end DevSecOps CI/CD platform and the Iron Bank for centralized container storage (i.e., container registry). These services have led the way to demonstrating that the principles of DevSecOps can be integrated into mission critical systems while still preserving the highest levels of security to protect the most classified information.

If you’re interested to learn more about how Platform One has unlocked the productivity bonus of DevSecOps while still maintaining DoD levels of security, watch our webinar with Camdon Cady, Chief of Operations and Chief Technology Officer of Platform One.

Who does it apply to?

Federal Service Integrators (FSI)

Any organization that works with the DoD as a federal service integrator will want to be intimately familiar with DoD software factories as they will either have to build on top of existing software factories or, if the mission/program wants to have full control over their software factory, be able to build their own for the agency.

Department of Defense (DoD) Mission

Any Department of Defense (DoD) mission will need to be well-versed on DoD software factories as all of their software and systems will be required to run on a software factory as well as both reach and maintain a cATO.

What are the components of a DoD Software Factory?

A DoD software factory is composed of both high-level principles and specific technologies that meet these principles. Below are a list of some of the most significant principles of a DoD software factory:

Principles of DevSecOps embedded into a DoD software factory

  1. Breakdown organizational silos
    • This principle is borrowed directly from the DevSecOps movement, specifically the DoD aims to integrate software development, test, deployment, security and operations into a single culture with the organization.
  2. Open source and reusable code
    • Composable software building blocks is another principle of the DevSecOps that increases productivity and reduces security implementation errors from developers writing secure software packages that they are not experts in.
  3. Immutable Infrastructure-as-Code (IaC)
    • This principle focuses on treating the infrastructure that software runs on as ephemeral and managed via configuration rather than manual systems operations. Enabled by cloud computing (i.e., hardware virtualization) this principle increases the security of the underlying infrastructure through templated secure-by-design defaults and reliability of software as all infrastructure has to be designed to fail at any moment.
  4. Microservices architecture (via containers)
    • Microservices are a design pattern that creates smaller software services that can be built and scale independently of each other. This principle allows for less complex software that only performs a limited set of behavior.
  5. Shift Left
    • Shift left is the DevSecOps principle that re-frames when and how security testing is done in the software development lifecycle. The goal is to begin security testing while software is being written and tested rather than after the software is “complete”. This prevents insecure practices from cascading into significant issues right as software is ready to be deployed.
  6. Continuous improvement through key capabilities
    • The principle of continuous improvement is a primary characteristic of the DevSecOps ethos but the specific key capabilities that are defined in the DoD DevSecOps playbook are what make this unique to the DoD.
  7. Define a DevSecOps pipeline
    • A DevSecOps pipeline is the system that utilizes all of the preceding principles in order to create the continuously improving security outcomes that is the goal of the DoD software factory program.
  8. Cyber resilience
    • Cyber resiliency is the goal of a DoD software factory, is it defined as, “the ability to anticipate, withstand, recover from, and adapt to adverse conditions, stresses, attacks, or compromises on the systems that include cyber resources.”

Common tools and systems of a DoD software factory

  1. Code Repository (e.g., Repo One)
    • Where software source code is stored, managed and collaborated on.
  2. CI/CD Build Pipeline (e.g., Big Bang)
    • The system that automates the creation of software build artifacts, tests the software and packages the software for deployment.
  3. Artifact Repository (e.g., Iron Bank)
    • The storage system for software components used in development and the finished software artifacts that are produced from the build process.
  4. Runtime Orchestrator and Platform (e.g., Big Bang)
    • The deployment system that hosts the software artifacts pulled from the registry and keeps the software running so that users can access it.

How do I meet the security requirements for a DoD Software Factory? (Best Practices)

Use a pre-existing software factory

The benefit of using a pre-existing DoD software factory is the same as using a public cloud provider; someone else manages the infrastructure and systems. What you lose is the ability to highly customize your infrastructure to your specific needs. What you gain is the simplicity of only having to write software and allow others with specialized skill sets to deal with the work of building and maintaining the software infrastructure. When you are a car manufacturer, you don’t also want to be a civil engineering firm that designs roads.

To view existing DoD software factories, visit the Software Factory Ecosystem Coalition website.

Map of all DoD software factories in the US.

Roll your own by following DoD best practices 

If you need the flexibility and customization of managing your own software factory then we’d recommend following the DoD Enterprise DevSecOps Reference Design as the base framework. There are a few software supply chain security recommendations that we would make in order to ensure that things go smoothly during the authorization to operate (ATO) process:

  1. Continuous vulnerability scanning across all stages of CI/CD pipeline
    • Use a cloud-native vulnerability scanner that can be directly integrated into your CI/CD pipeline and called automatically during each phase of the SDLC
  2. Automated policy checks to enforce requirements and achieve ATO
    • Use a cloud-native policy engine in tandem with your vulnerability scanner in order to automate the reporting and blocking of software that is a security threat and a compliance risk
  3. Remediation feedback
    • Use a cloud-native policy engine that can provide automated remediation feedback to developers in order to maintain a high velocity of software development
  4. Compliance (Trust but Verify)
    • Use a reporting system that can be directly integrated with your CI/CD pipeline to create and collect the compliance artifacts that can prove compliance with DoD frameworks (e.g., CMMC and cATO)
  5. Air-gapped system

Is a software factory required in order to achieve cATO?

Technically, no. Effectively, yes. A cATO requires that your software is deployed on an Approved DoD Enterprise DevSecOps Reference Design not a software factory specifically. If you build your own DevSecOps platform that meets the criteria for the reference design then you have effectively rolled your own software factory.

How Anchore can help

The easiest and most effective method for achieving the security guarantees that a software factory is required to meet for its software supply chain are by using: 

  1. An SBOM generation tool that integrates directly into your software development pipeline
  2. A container vulnerability scanner that integrates directly into your software development pipeline
  3. A policy engine that integrates directly into your software development pipeline
  4. A centralized database to store all of your software supply chain security logs
  5. A query engine that can continuously monitor your software supply chain and automate the creation of compliance artifacts

These are the primary components of both Anchore Enterprise and Anchore Federal cloud native, SBOM-powered software composition analysis (SCA) platforms that provide an end-to-end software supply chain security to holistically protect your DevSecOps pipeline and automate compliance. This approach has been validated by the DoD, in fact the DoD’s Container Hardening Process Guide specifically named Anchore Federal as a recommended container hardening solution.

Learn more about how Anchore fuses DevSecOps and DoD software factories.

Conclusion and Next Steps

DoD software factories can come off as intimidating at first but hopefully we have broken them down into a more digestible form. At their core they reflect the best of the DevSecOps movement with specific adaptations that are relevant to the extreme threat environment that the DoD has to operate in, as well as, the intersecting trend of the modernization of federal security compliance standards.

If you’re looking to dive deeper into all things DoD software factory, we have a white paper that lays out the 6 best practices for container images in highly secure environments. Download the white paper below.

Modernizing FedRAMP: GSA’s Roadmap to Streamline Authorization

If you’ve ever thought that the FedRAMP (Federal Risk and Authorization Management Program) authorization process is challenging and laborious, things may be getting better. The General Services Administration’s (GSA) has publicly committed to improving the authorization process by publishing a public roadmap to modernize FedRAMP

The purpose of FedRAMP is to act as a central intermediary between federal agencies and cloud service providers (CSP) in order to make it easier for agencies to purchase software services and for CSPs to sell software services to agencies. By being the middleman, FedRAMP creates a single marketplace that reduces the amount of time it takes for an agency to select and purchase a product. From the CSP perspective, FedRAMP becomes a single standard that they can target for compliance and after achieving authorization they get access to 200+ agencies that they can sell to—a win-win.

Unfortunately, that promised land wasn’t the typical experience for either side of the exchange. Since FedRAMP’s inception in 2011, the demand for cloud services has increased significantly. Cloud was still in its infancy at the birth of FedRAMP and the majority of federal agencies still procured software with perpetual licenses rather than as a cloud service (e.g., SaaS). In the following 10+ years that have passed, that preference has inverted and now the predominant delivery model is infrastructure/platform/software-as-a-service.

This has led to an environment where new cloud services are popping up every year but federal agencies don’t have access to them via the streamlined FedRAMP marketplace. On the other side of the coin, CSPs want access to the market of federal agencies that are only able to procure software via FedRAMP but the process of becoming FedRAMP certified is a complex and laborious process that reduces the opportunity cost of access to this market.

Luckily, the GSA isn’t resting on its laurels. Due to feedback from all stakeholders they are prioritizing a revamp of the FedRAMP authorization process to take into account the shifting preferences in the market. To help you get a sense of what is happening, how quickly you can expect changes and the benefits of the initiative, we have compiled a comprehensive FAQ.

Frequently Asked Questions (FAQ)

How soon will the benefits of FedRAMP modernization be realized?

Optimistically changes will be rolling out over the next 18 months and be completed by the end of 2025. See the full rollout schedule on the public roadmap.

Who does this impact?

  • Federal agencies
  • Cloud service providers (CSP)
  • Third-party assessment organization (3PAO)

What are the benefits of the FedRAMP modernization initiative?

TL;DR—For agencies

  • Increased vendor options within the FedRAMP marketplace
  • Reduced wait time for CSPs in authorization process

TL;DR—For CSPs

  • Reduced friction during the authorization process
  • More clarity on how to meet security requirements
  • Less time and cost spent on the authorization process

TL;DR—For 3PAOs

  • Reduced friction between 3PAO and CSP during authorization process
  • Increased clarity on how to evaluate CSPs

What prompted the GSA to improve FedRAMP now?

GSA is modernizing FedRAMP because of feedback from stakeholders. Both federal agencies and CSPs levied complaints about the current FedRAMP process. Agencies wanted more CSPs in the FedRAMP marketplace that they could then easily procure. CSPs wanted a more streamlined process so that they could get into the FedRAMP marketplace faster. The point of friction was the FedRAMP authorization process that hasn’t evolved at the same pace as the transition from the on-premise, perpetual license delivery model to the rapid, cloud services model.

How will GSA deliver on its promises to modernize FedRAMP?

The full list of initiatives can be found in their public product roadmap document but the highlights are:

  • Taking a customer-centric approach that reduces friction in the authorization process based on customer interviews
  • Publishing clear guidance on how to meet core security requirements
  • Streamlining authorization process to reduce bottlenecks based on best practices from agencies that have developed a strong authorization process
  • Moving away from lengthy documents and towards a data-first foundation to enable automation of the authorization process for CSPs and 3PAOs

Wrap-Up

The GSA has made a commitment to being transparent about the improvements to the modernization process. Anchore, as well as, the rest of the public sector stakeholders will be watching and holding the GSA accountable. Follow this blog or the Anchore LinkedIn page to stay updated on progress.If the 18 month timeline is longer than you’re willing to wait, Anchore is already an expert in supporting organizations that are seeking FedRAMP authorization. Anchore Enterprise is a modern, cloud-native software composition analysis (SCA) platform that both meets FedRAMP compliance standards and helps evaluate whether your software supply chain is FedRAMP compliant. If you’re interested to learn more, download “FedRAMP Requirements Checklist for Container Vulnerability Scanning” or learn more about how Anchore Enterprise has helped organizations like Cisco achieve FedRAMP compliance in weeks versus months.

Reduce risk in your software supply chain: 5 tips for container security

Rising threats to the software supply chain and increasing use of containers are causing organizations to focus on container security. Containers bring many unique security challenges due to their layered dependencies and the fact that many container images come from public repositories.

Our new white paper, Reduce Risk for Software Supply Chain Attacks: Best Practices for Container Security, digs into 5 tips for securing containers. It also describes how Anchore Enterprise simplifies implementation of these critical best practices, so you don’t have to.

5 best practices to instantly strengthening container security

  1. Use SBOMs to build a transparent foundation

SBOMs—Software Bill of Materials—create a trackable inventory of the components you use, which is a precursor for identifying security risks, meeting regulatory requirements and assessing license compliance. Get recommendations on the best way to generate, store, search and share SBOMs for better transparency.  

  1. Identify vulnerabilities early with continuous scanning

Security issues can arise at any point in the software supply chain. Learn why shifting left is necessary, but not sufficient for container security. Understand the role SBOMs are critical when responding to zero-day vulnerabilities.

  1. Automate policy enforcement and security gates

Find out how to use automated policies to identify which vulnerabilities should be fixed and enforce regulatory requirements. Learn how a customizable policy engine and out-of-the-box policy packs streamline your compliance efforts. 

  1. Reduce toil in the developer experience

Integrating with the tools developers use, minimizing false positives, and providing a path to faster remediation will keep developers happy and your software development moving efficiently.  See how Anchore Enterprise makes it easy to provide a good developer experience

  1. Protect your software supply chain with security controls

To protect your software supply chain, you must ensure that the code you bring in from third-party sources is trusted and vetted. Implement vetting processes for open-source code that you use.