Balancing the Scale: Software Supply Chain Security and APTs

Note: This is a multi-part series primer on the intersection of advanced persistent threats (APTs) and software supply chain security (SSCS). This blog post is the first in the series. We will update this blog post with links to the additional parts of the series as they are published.
Part 1 | With Great Power Comes Great Responsibility: APTs & Software Supply Chain Security
Part 2 | David and Goliath: the Intersection of APTs and Software Supply Chain Security
• Part 3 (This blog post)

Last week we dug into the details of why an organization’s software supply chain is a ripe target for well-resourced groups like APTs and the potential avenues that companies have to combat this threat. This week we’re going to highlight the Anchore Enterprise platform and how it provides a turnkey solution for combating threats to any software supply chain.

How Anchore Can Help

Anchore was founded on the belief that a security platform that delivers deep, granular insights into an organization’s software supply chain, covers the entire breadth of the SDLC and integrates automated feedback from the platform will create a holistic security posture to detect advanced threats and allow for human interaction to remediate security incidents. Anchore is trusted by Fortune 100 companies and the most exacting federal agencies across the globe because it has delivered on this promise.

The rest of the blog post will detail how Anchore Enterprise accomplishes this.

Depth: Automating Software Supply Chain Threat Detection

Having deeper visibility into an organization’s software supply chain is crucial for security purposes because it enables the identification and tracking of every component in the software’s construction. This comprehensive understanding helps in pinpointing vulnerabilities, understanding dependencies, and identifying potential security risks. It allows for more effective management of these risks by enabling targeted security measures and quicker response to potential threats. Essentially, deeper visibility equips an organization to better protect itself against complex cyber threats, including those that exploit obscure or overlooked aspects of the software supply chain.

Anchore Enterprise accomplishes this by generating a comprehensive software bill of materials (SBOM) for every piece of software (even down to the component/library/framework-level). It then compares this detailed ingredients list against vulnerability and active exploit databases to identify exactly where in the software supply chain there are security risks. These surgically precise insights can then be fed back to the original software developers, rolled-up into reports for the security team to better inform risk management or sent directly into an incident management workflow if the vulnerability is evaluated as severe enough to warrant an “all-hands on deck” response.

Developers shouldn’t have to worry about manually identifying threats and risks inside your software supply chain. Having deep insights into your software supply chain and being able to automate the detection and response is vital to creating a resilient and scalable solution to the risk of APTs.

Breadth: Continuous Monitoring in Every Step of Your Software Supply Chain

The breadth of instrumentation in the Software Development Lifecycle (SDLC) is crucial for securing the software supply chain because it ensures comprehensive security coverage across all stages of software development. This broad instrumentation facilitates early detection and mitigation of vulnerabilities, ensures consistent application of security policies, and allows for a more agile response to emerging threats. It provides a holistic view of the software’s security posture, enabling better risk management and enhancing the overall resilience of the software against cyber threats.

Powered by a 100% feature complete platform API, Anchore Enterprise integrates into your existing DevOps pipeline.

Anchore has been supporting the DoD in this effort since 2019. Commonly referred to as “overwatch” for the DoD’s software supply chain. Anchore Enterprise continuously monitors how risk is evolving based on the ingesting of tens of thousands of runtime containers, hundreds of source code repositories and alerting on malware-laced images submitted to the registry. Monitoring every stage of the DevOps pipeline, source to build to registry to deploy, to gain a holistic view of when and where threats enter the software development lifecycle.

Feedback: Alerting on Breaches or Critical Events in Your Software Supply Chain

Integrating feedback from your software supply chain and SDLC into your overall security program is important because it allows for real-time insights and continuous improvement in security practices. This integration ensures that lessons learned and vulnerabilities identified at any stage of the development or deployment process are quickly communicated and addressed. It enhances the ability to preemptively manage risks and adapt to new threats, thereby strengthening the overall security posture of the organization.

How would you know if something is wrong in a system? Create high-quality feedback loops, of course. If there is a fire in your house, you typically have a fire alarm. That is a great source of feedback. It’s loud and creates urgency. When you investigate to confirm the fire is legitimate and not a false alarm; you can see fire, you can feel fire.

Software supply chain breaches are more similar to carbon monoxide leaks. Silent, often undetected, and potentially lethal. If you don’t have anything in place to specifically alert for that kind of threat then you could pay severely. 

Anchore Enterprise was designed specifically as both a set of sensors that can be deployed both deeply and broadly into your software supply chain AND a system of feedback that uses the sensors in your supply chain to detect and alert on potential threats that are silently emitting carbon monoxide in your warehouse.

Anchore Enterprise’s feedback mechanisms come in three flavors; automatic, recommendations and informational. Anchore Enterprise utilizes a policy engine to enable automatic action based on the feedback provided by the software supply chain sensors. If you want to make sure that no software is ever deployed into production (or any environment) with an exploitable version of Log4j the Anchore policy engine can review the security metadata created by the sensors for the existence of this software component and stop a deployment in progress before it ever becomes accessible to attackers.

Anchore Enterprise can also be configured to make recommendations and provide opinionated actions based on security signals. If a vulnerability is discovered in a software component but it isn’t considered urgent, Anchore Enterprise can instead provide a recommendation to the software developer to fix the vulnerability but still allow them to continue to test and deploy their software. This allows developers to become aware of security issues very early in the SDLC but also provide flexibility for them to fix the vulnerability based on their own prioritization.

Finally, Anchore Enterprise offers informational feedback that alerts developers, the security team or even the executive team to potential security risks but doesn’t offer a specific solution. These types of alerts can be integrated into any development, support or incident management systems the organization utilizes. Often these alerts are for high risk vulnerabilities that require deeper organizational analysis to determine the best course of action in order to remediate.

Conclusion

Due to the asymmetry between APTs and under-resourced security teams, the goal isn’t to create an impenetrable fortress that can never be breached. The goal is instead to follow security best practices and instead litter your SDLC with sensors and automated feedback mechanisms. APTs may have significantly more resources than your security team but they are still human and all humans make mistakes. By placing low-effort tripwires in as many locations as possible, you reverse the asymmetry of resources and instead allow the well-resourced adversary to become their own worst enemy. APTs are still software developers at the end of the day and no one writes bug-free code in the long run. By transforming your software supply chain into a minefield of best practices, you create a battlefield that requires your adversaries to slow down and carefully disable each individual security mechanism. None are impossible to disarm but each speed bump creates another opportunity for your adversary to make a mistake and reveal themselves. If the zero-trust architecture has taught us anything, it is that an impenetrable perimeter was never the best strategy.

David and Goliath: the Intersection of APTs and Software Supply Chain Security

Note: This is a multi-part series primer on the intersection of advanced persistent threats (APTs) and software supply chain security (SSCS). This blog post is the second in the series. If you’d like to start from the beginning, you can find the first blog post here.

Last week we set the stage for discussing APTs and the challenges they pose for software supply chain security by giving a quick overview of each topic. This week we will dive into the details of how the structure of the open source software supply chain is a uniquely ripe target for APTs.

The Intersection of APTs and Software Supply Chain Security

The Software Ecosystem: A Ripe Target

APT groups often prioritize the exploitation of software supply chain vulnerabilities. This is due to the asymmetric structure of the software ecosystem. By breaching a single component, such as a build system, they can gain access to any organization using the compromised software component. This creates an inversion in the cost benefit of the effort involved in the research and development effort needed to discover a vulnerability and craft an exploit for the vulnerability. Before APTs were focused primarily on targets where the pay off could warrant the investment or vulnerabilities that were so wide-spread that the attack could be automated. The complex interactions of software dependencies allows APTs to scale their attack due to the structure of the ecosystem.

The Software Supply Chain Security Dynamic: An Unequal Playing Ground

The interesting challenge with software supply chain security is that securing the supply chain requires even more effort than an APT would take to exploit it. The rub comes because each company that consumes software has to build a software supply chain security system to protect their organization. An APT investing in exploiting a popular component or system gets the benefit of access to all of the software built on top of it.

Given that security organizations are at a structural disadvantage, how can organizations even the odds?

How Do I Secure My Software Supply Chain from APTs?

An organization’s ability to detect the threat of APTs in its internal software supply chain comes down to three core themes that can be summed up as “go deep, go wide and integrate feedback”. Specifically this means, the deeper the visibility into your organization’s software supply chain the less surface area an attack has to slip in malicious software. The wider this visibility is deployed across the software development lifecycle, the earlier an attacker will be caught. Neither of the first two points matter if the feedback produced isn’t integrated into the overall security program that can act on the signals surfaced.

By applying these three core principles to the design of a secure software supply chain, an organization can ensure that they balance the playing field against the structural advantage APTs possess.

How Can I Easily Implement a Strategy for Securing My Software Supply Chain?

The core principles of depth, breadth and feedback are powerful touchstones to utilize when designing a secure software supply chain that can challenge APTs but they aren’t specific rules that can be easily implemented. To address this, Anchore has created the open source VIPERR Framework to provide specific guidance on how to achieve the core principles of software supply chain security.

VIPERR is a free software supply chain security framework that Anchore created for organizations to evaluate and improve the security posture of their software supply chain. VIPERR stands for visibility, inspection, policy enforcement, remediation, and reporting. 

Utilizing the VIPERR Framework an organization can satisfy the three core principles of software supply chain security; depth, breadth and feedback. By following this guide, numerous Fortune 500 enterprises and top federal agencies have transformed their software supply chain security posture and become harder targets for advanced persistent threats. If you’re looking to design and run your own secure software supply chain system, this framework will provide a shortcut to ensure the developed system will be resilient. 

How Can I Comprehensively Implement a Strategy for Securing My Software Supply Chain?

There are a number of different comprehensive initiatives to define best practices for software supply chain security. Organizations ranging from the National Institute of Standards and Technology (NIST) with standards such as SP 800-53, SP 800-218, and SP 800-161. The Cloud Native Computing Foundation (CNCF) to Open Source Security Foundation (OpenSSF) have created detailed documentation on their recommendations to achieve a comprehensive supply chain security program, such as, the SLSA framework and Secure Supply Chain Consumption Framework (S2C2F) Project. Be aware that these are not quick and dirty solutions for achieving a “reasonably” secure software supply chain. They are large undertakings for any organization and should be given the resources needed to achieve success. 

We don’t have the time to go over each in this blog post but we have broken each down in our complete guide to software supply chain security.

This is the second in a series of blog posts focused on the intersection of APTs and software supply chain security. This blog post highlighted the reasons that APTs focus their efforts on software supply chain exploits and the potential avenues that companies have to combat this threat. Next week we will discuss the Anchore Enterprise solution as a turnkey platform to implement the strategies outlined above.

How Cisco Umbrella Achieved FedRAMP Compliance in Weeks

Implementing compliance standards can be a daunting task for IT and security teams. The complexity and volume of requirements, increased workload, and resource constraints make it challenging to ensure compliance without overwhelming those responsible. Our latest case study, “How Cisco Umbrella Achieved FedRAMP Compliance in Weeks,” provides a roadmap for overcoming these challenges, leading to a world of streamlined compliance with low cognitive overhead.

Challenges Faced by Cisco Umbrella

Cisco Umbrella for Government, a cloud-native cybersecurity solution tailored for federal, state, and local government agencies, faced a tight deadline to meet FedRAMP vulnerability scanning requirements. They needed to integrate multiple security functions into a single, manageable solution while ensuring comprehensive protection across various environments, including remote work settings. Key challenges included:

  • Meeting all six FedRAMP vulnerability scanning requirements
  • Maintaining and automating STIG & FIPS compliance for Amazon EC2 virtual machines
  • Integrating end-to-end container security across the CI/CD pipeline, Amazon EKS, and Amazon ECS
  • Meeting SBOM requirements for White House Executive Order (EO 14028)

Solutions Implemented

To overcome these challenges, Cisco Umbrella leveraged Anchore Enterprise, a leading software supply chain security platform specializing in container security and vulnerability management. Anchore Enterprise integrated seamlessly with Cisco’s existing infrastructure, providing:

These features enabled Cisco Umbrella to secure their software supply chain, ensuring compliance with FedRAMP, STIG, FIPS, and EO 14028 within a short timeframe.

Remarkable Results

By integrating Anchore Enterprise, Cisco Umbrella achieved:

  • FedRAMP, FIPS, and STIG compliance in weeks versus months
  • Reduced implementation time and improved developer experience
  • Proactive vulnerability detection in development, saving hours of developer time
  • Simplified security data management with a complete SBOM management solution

Download the Case Study Today

Navigating the complexity and volume of compliance requirements can be overwhelming for IT and security teams, especially with increased workloads and resource constraints. Cisco Umbrella’s experience shows that with the right tools, achieving compliance can be streamlined and manageable. Discover how you can implement these strategies in your organization by downloading our case study, “How Cisco Umbrella Achieved FedRAMP Compliance in Weeks,” and take the first step towards streamlined compliance today.

Using the Common Form for SSDF Attestation: What Software Producers Need to Know

The release of the long-awaited Secure Software Development Attestation Form on March 18, 2024 by the Cybersecurity and Infrastructure Agency (CISA) increases the focus on cybersecurity compliance for software used by the US government. With the release of the SSDF attestation form, the clock is now ticking for software vendors and federal systems integrators to comply with and attest to secure software development practices.

This initiative is rooted in the cybersecurity challenges highlighted by Executive Order 14028, including the SolarWinds attack and the Colonial Pipeline ransomware attack, which clearly demonstrated the need for a coordinated national response to the emerging threats of a complex software supply chain. Attestation to Secure Software Development Framework (SSDF) requirements using the new Common Form is the most recent, and likely not the final, step towards a more secure software supply chain for both the United States and the world at large. We will take you through the details of what this form means for your organization and how to best approach it.

Overview of the SSDF attestation

SSDF attestation is part of a broader effort derived from the Cybersecurity EO 14028 (formally called “Improving the Nation’s Cybersecurity). As a result of this EO, the Office of Management and Budget (OMB) issued two memorandums, M-22-18 “Enhancing the Security of the Software Supply Chain through Secure Software Development Practices” and M-23-16 “Update to Memorandum M-22-18”.

These memos require the Federal agencies to obtain self-attestation forms from software suppliers. Software suppliers have to attest to complying with a subset of the Secure Software Development Framework (SSDF).

Before the publication of the SSDF attestation form, the SSDF was a software development best practices standard published by the National Institute of Standards and Technology (NIST) based on industry best practices like OWASP’s BSIMM and SAMM, a useful resource for organizations that valued security intrinsically and wanted to run secure software development without any external incentives like formal compliance requirements.

Now, the SSDF attestation form requires software providers to self-attest to having met a subset of the SSDF best practices. There are a number of implications to this transition from secure software development as being an aspiration standard to a compliance standard that we will cover below. The most important thing to keep in mind is that while the Attestation Form doesn’t require a software provider to be formally certified before they can transaction with a federal agency like FedRAMP does, there are retroactive punishments that can be applied in cases of non-compliance.

Who/What is Affected?

  1. Software providers to federal agencies
  • Federal service integrators
  • Independent software vendor
  • Cloud service providers
  1. Federal agencies and DoD programs who use any of the above software providers

Included

  • New software: Any software developed after September 14, 2022
  • Major updates to existing software: A major version change after September 14, 2022
  • Software-as-a-Service (SaaS)

Exclusions

  • First-party software: Software developed in-house by federal agencies. SSDF is still considered a best practice but does not require self-attestation
  • Free and open-source software (FOSS): Even though FOSS components and end-user products are excluded from self-attestation the SSDF requires that specific controls are in place to protect against software supply chain security breaches

Key Requirements of the Attestation Form

There are two high-level requirements for meeting compliance with the SSDF attestation form;

  1. Meet the technical requirements of the form
    • Note: NIST SSDF has 19 categories and 42 total requirements. The self-attestation form has 4 categories which are a subset of the full SSDF
  2. Self-attest to compliance with the subset of SSDF
    • Sign and return the form

Timeline

The timeline for compliance with the SSDF self-attestation form involves two critical dates:

  • Critical software: Jun 11, 2024 (3 months after approval on March 11)
  • All software: Sep 11, 2024 (6 months after approval on March 11)

Implications

Now that CISA has published the final version of the SSDF attestation form there are a number of implications to this transition. One is financial and the other is potentially criminal.

The financial penalty of not attesting to secure software development practices via the form can be significant. Federal agencies are required to stop using the software, potentially impacting your revenue,  and any future agencies you want to work with will ask to see your SSDF attestation form before procurement. Sign the form or miss out on this revenue.

The second penalty is a bit scarier from an individual perspective. An officer of the company has to sign the attestation form to state that they are responsible for attesting to the fact that all of the form’s requirements have been met. Here is the relevant quote from the form:

“Willfully providing false or misleading information may constitute a violation of 18 U.S.C. § 1001, a criminal statute.”

It is also important to realize that this isn’t an unenforceable threat. There is evidence that the DOJ Civil Cyber Fraud Initiative is trying to crack down on government contractors failing to meet cybersecurity requirements. They are bringing False Claims Act investigations and enforcement actions. This will likely weigh heavily on both the individual that signs the form and who is chosen at the organization to sign the form.

Given this, most organizations will likely opt to utilize a third-party assessment organization (3PAO) to sign the form in order to shift liability off of any individual in the organization.

Challenges and Considerations

Do I still have to sign if I have a 3PAO do the technical assessment?

No. As long as the 3PAO is FedRAMP-certified. 

What if I can’t comply in time?

You can draft a plan of action and milestones (POA&M) to fill the gap while you are addressing the gaps between your current system and the system required by the attestation form. If the agency is satisfied with the POA&M then they can continue to use your software. But they have to request either an extension of the deadline from OMB or a waiver in order to do that.

Can only the CEO and COO sign the form?

The wording in the draft form that was published required either the CEO or COO but new language was added to the final form that allows for a different company employee to sign the attestation form.

Conclusion

Cybersecurity compliance is a journey not a destination. SSDF attestation is the next step in that journey for secure software development. With the release of the SSDF attestation for, the SSDF standard is not transformed from a recommendation into a requirement. Given the overall trend of cybersecurity modernization that was kickstarted with FISMA in 2002, it would be prudent to assume that this SSDF attestation form is an intermediate step before the requirements become a hard gate where compliance will have to be demonstrated as a prerequisite to utilizing the software.

If you’re interested to get a deep-dive into what is technically required to meet the requirements of the SSDF attestation form, read all of the nitty-gritty details in our eBook, “SSDF Attestation 101: A Practical Guide for Software Producers“. 

If you’re looking for a solution to help you achieve the technical requirements of SSDF attestation quickly, take a look at Anchore Enterprise. We have helped hundreds of enterprises achieve SSDF attestation in days versus months with our automated compliance platform.

With Great Power Comes Great Responsibility: APTs & Software Supply Chain Security

Note: This is a multi-part series primer on the intersection of advanced persistent threats (APTs) and software supply chain security (SSCS). This blog post is the first in the series. We will update this blog post with links to the additional parts of the series as they are published.
• Part 1 (This blog post)
Part 2
Part 3

In the realm of cybersecurity, the convergence of Advanced Persistent Threats (APTs) and software supply chain security presents a uniquely daunting challenge for organizations. APTs, characterized by their sophisticated, state-sponsored or well-funded nature, focus on stealthy, long-term data theft, espionage, or sabotage, targeting specific entities. Their effectiveness is amplified by the asymmetric power dynamics of a well funded attacker versus a resource constrained security team.

Modern supply chains inadvertently magnify the impact of APTs due to the complex and interconnected dependency network of software and hardware components. The exploitation of this weakness by APTs not only compromises the targeted organizations but also poses a systemic risk to all users of the compromised downstream components. The infamous Solarwinds exploit exemplifies the far-reaching consequences of such breaches.

This landscape underscores the necessity for an integrated approach to cybersecurity, emphasizing depth, breadth, and feedback to create a holistic software supply chain security program that can withstand even adversaries as motivated and well-resourced as APTs. Before we jump into how to create a secure software supply chain that can resist APTs, let’s understand our adversary a bit better first.

Know Your Adversary: Advanced Persistent Threats (APTs)

What is an Advanced Persistent Threats (APT)?

An Advanced Persistent Threat (APT) is a sophisticated, prolonged cyberattack, usually state-sponsored or executed by well-funded criminal groups, targeting specific organizations or nations. Characterized by advanced techniques, APTs exploit zero-day vulnerabilities and custom malware, focusing on stealth and long-term data theft, espionage, or sabotage. Unlike broad, indiscriminate cyber threats, APTs are highly targeted, involving extensive research into the victim’s vulnerabilities and tailored attack strategies.

APTs are marked by their persistence, maintaining a foothold in a target’s network for extended periods, often months or years, to continually gather information. They are designed to evade detection, blending in with regular network traffic, and using methods like encryption and log deletion. Defending against APTs requires robust, advanced security measures, continuous monitoring, and a proactive cybersecurity approach, often necessitating collaboration with cybersecurity experts and authorities.

High-Profile APT Example: Operation Triangulation

The recent Operation Triangulation campaign disclosed by Kaspersky researchers is an extraordinary example of an APT in both its sophistication and depth. The campaign made use of four separate zero-day vulnerabilities, utilized a highly targeted approach towards specific individuals at Kaspersky, combined a multi-phase attack pattern and persisted over a four year period. Its complexity, implied significant resources possibly from a nation-state, and the stealthy, methodical progression of the attack, align closely with the hallmarks of APTs. Famed security researcher, Bruce Schneier, writing on his blog, Schneier on Security, wasn’t able to contain his surprise upon reading the details of the campaign, “[t]his is nation-state stuff, absolutely crazy in its sophistication.”

What is the impact of APTs on organizations?

Ignoring the threat posed by Advanced Persistent Threats (APTs) can lead to significant impact for organizations, including extensive data breaches and severe financial losses. These sophisticated attacks can disrupt operations, damage reputations, and, in cases involving government targets, even compromise national security. APTs enable long-term espionage and strategic disadvantage due to their persistent nature. Thus, overlooking APTs leaves organizations exposed to continuous, sophisticated cyber espionage and the multifaceted damages that follow.

Now that we have a good grasp on the threat of APTs, we turn our attention to the world of software supply chain security to understand the unique features of this landscape.

Setting the Stage: Software Supply Chain Security

What is Software Supply Chain Security?

Software supply chain security is focused on protecting the integrity of software through its development and distribution. Specifically it aims to prevent the introduction of malicious code into software that is utilized as components to build widely-used software services.

The open source software ecosystem is a complex supply chain that solves the problem of redundancy of effort. By creating a single open source version of a web server and distributing it, new companies that want to operate a business on the internet can re-use the generic open source web server instead of having to build its own before it can do business. These new companies can instead focus their efforts on building new bespoke software on top of a web server that does new, useful functions for users that were previously unserved. This is typically referred to as compostable software building blocks and it is one of the most important outcomes of the open source software movement.

But as they say, “there are no free lunches”. While open source software has created this incredible productivity boon comes responsibility. 

What is the Key Vulnerability of the Modern Software Supply Chain Ecosystem?

The key vulnerability in the modern software supply chain is the structure of how software components are re-used, each with its own set of dependencies, creating a complex web of interlinked parts. This intricate dependency network can lead to significant security risks if even a single component is compromised, as vulnerabilities can cascade throughout the entire network. This interconnected structure makes it challenging to ensure comprehensive security, as a flaw in any part of the supply chain can affect the entire system.

Modern software is particularly vulnerable to software supply chain attacks because 70-90% of modern applications are open source software components with the remaining 10-30% being the proprietary code that implements company specific features. This means that by breaching popular open source software frameworks and libraries an attacker can amplify the blast radius of their attack to effectively reach significant portions of internet based services with a single attack.

If you’re looking for a deeper understanding of software supply chain security we have written a comprehensive guide to walk you through the topic in full.

High-Profile Software Supply Chain Exploit Example: SolarWinds

In one of the most sophisticated supply chain attacks, malicious actors compromised the update mechanism of SolarWinds’ Orion software. This breach allowed the attackers to distribute malware to approximately 18,000 customers. The attack had far-reaching consequences, affecting numerous government agencies, private companies, and critical infrastructure.

Looking at the example of SolarWinds, the lesson we should take away is not to put a focus on prevention. APTs has a wealth of resources to draw upon. Instead the focus should be on monitoring the software we consume, build, and ship for unexpected changes. Modern software supply chains come with a great deal of responsibility. The software we use and ship need to be understood and monitored.

This is the first in a series of blog posts focused on the intersection of APTs and software supply chain security. This blog post highlighted the contextual background to set the stage for the unique consequences of these two larger forces. Next week, we will discuss the implications of the collision of these two spheres in the second blog post in this series.

Anchore’s June Line-Up: Essential Events for Software Supply Chain Security and DevSecOps Enthusiasts

Summer is beginning to ramp up, but before we all check out for the holidays, Anchore has a sizzling hot line-up of events to keep you engaged and informed. This June, we are excited to host and participate in a number of events that cater to the DevSecOps crowd and the public sector. From insightful webinars to hands-on workshops and major conferences, there’s something for everyone looking to enhance their knowledge and connect with industry leaders. Join us at these events to learn more about how we are driving innovation in the software supply chain security industry.

WEBINAR: How the US Navy is enabling software delivery from lab to fleet

Date: Jun 4, 2024

The US Navy’s DevSecOps platform, Party Barge, has revolutionized feature delivery by significantly reducing onboarding time from 5 weeks to just 1 day. This improvement enhances developer experience and productivity through actionable findings and fewer false positives, while maintaining high security standards with inherent policy enforcement and Authorization to Operate (ATO). As a result, development teams can efficiently ship applications that have achieved cyber-readiness for Navy Authorizing Officials (AOs).

In an upcoming webinar, Sigma Defense and Anchore will provide an in-depth look at the secure pipeline automation and security artifacts that expedite application ATO and production timelines. Topics will include strategies for removing silos in DevSecOps, building efficient development pipeline roles and component templates, delivering critical security artifacts for ATO (such as SBOMs, vulnerability reports, and policy evidence), and streamlining operations with automated policy checks on container images.

WORKSHOP: VIPERR — Actionable Framework for Software Supply Chain Security

Date: Jun 17, 2024 from 8:30am – 2:00pm ET

Location: Carahsoft office in Reston, VA

Anchore, in partnership with Carahsoft, is offering an exclusive in-person workshop to walk security practitioners through the principles of the VIPERR framework. Learn the framework hands-on from the team that originally developed the industry leading software supply chain security framework. In case you’re not familiar, the VIPERR framework enhances software supply chain security by enabling teams to evaluate and improve their security posture. It offers a structured approach to meet popular compliance standards. VIPERR stands for visibility, inspection, policy enforcement, remediation, and reporting, focusing on actionable strategies to bolster supply chain security.

The workshop covers building a software bill of materials (SBOM) for visibility, performing security checks for vulnerabilities and malware during inspection, enforcing compliance with both external and internal standards, and providing recommendations and automation for quick issue remediation. Additionally, timely reporting at any development stage is emphasized, along with a special topic on achieving STIG compliance.

EVENT: Carahsoft DevSecOps Conference 2024

Date: Jun 18, 2024

Location: The Ronald Reagan Building and International Trade Center in Washington, DC

If you’re planning to be at the show, our team is looking forward to meeting you.  You can book a demo session with us in advance!

On top of offering the VIPERR workshop, the Anchore team will be attending Carahsoft’s 2nd annual DevSecOps Conference in Washington, DC, a comprehensive forum designed to address the pressing technological, security, and innovation challenges faced by government agencies today. The event aims to explore innovative approaches such as DoD software factories, which drive efficiency and enhance the delivery of citizen-centric services, and DevSecOps, which integrates security into the software development lifecycle to combat evolving cybersecurity threats. Through a series of panels and discussions, attendees will gain valuable knowledge on how to leverage these cutting-edge strategies to improve their operations and service delivery.

EVENT: AWS Summit Washington, DC

Dates:  June 26-27, 2024

Location: Walter E. Washington Convention Center in Washington, DC

If you’re planning to be at the show, our team is looking forward to meeting you.  You can book a demo session with us in advance!

To round out June, Anchore will also be attending AWS Summit Washington, DC. The event highlights how AWS partners can help public sector organizations meet the needs of federal agencies. Anchore is an AWS Public Sector Partner and a graduate of the AWS ISV Accelerate program.

See how Anchore helped Cisco Umbrella for Government achieve FedRAMP compliance by reading the co-authored blog post on the AWS Partner Network (APN) Blog. Or better yet, drop by our booth and the team can give you a live demo of the product.

VIRTUAL EVENT: Life after the xz utils backdoor hack with Josh Bressers

Date: Wednesday, June 5, from 12:35 PM – 1:20 PM EDT

The xz utils hack was a significant breach that profoundly undermined trust within the open source community. The discovery of the backdoor revealed vulnerabilities in the software supply chain. As a member of both the open source community and a solution provider for the software supply chain security field, we at Anchore have strong opinions about XZ specifically, and open source security generally. Anchore’s VP of Security,  Josh Bressers will be speaking publicly about this topic at Upstream 2024.

Be sure to catch the live stream of “Life after the xz utils backdoor hack,” a panel discussion featuring Josh Bressers. The panel will cover the implications of the recent xz utils backdoor hack and how the attack deeply impacted trust within the open source community. In keeping with the Upstream 2024 theme of “Unusual Ideas to Solve the Usual Problems”, Josh will be presenting the “unusual” solution that Anchore has developed to keep these types of hacks from impacting the industry. The discussion will include insights from industry experts such as Shaun Martin of BlackIce, Jordan Harband, prolific JavaScript maintainer, Rachel Stephens from RedMonk, and Terrence Fischer from Boeing.

Wrap-Up

Don’t miss out on these exciting opportunities to connect with Anchore and learn about the latest advancements in software supply chain security and DevSecOps. Whether you join us for a webinar, participate in our in-person VIPERR workshop, or visit us at one of the major conferences, you’ll gain valuable insights and practical knowledge to enhance your organization’s security posture. We’re looking forward to engaging with you and helping you navigate the evolving digital landscape. See you in June!

Also, if you want to stay up-to-date on all of the events that Anchore hosts or participates in be sure to bookmark our events page and check back often!

Navigating the Updates to cATO: Critical Changes & Practical Advice for DoD Programs

On April 11, the US Department of Defense (DoD)’s Chief Information Officer (CIO) released the DevSecOps Continuous Authorization Implementation Guide, marking the next step in the evolution of the DoD’s efforts to modernize its security and compliance ecosystem. This guide is part of a larger trend of compliance modernization that is transforming the US public sector and the global public sector as a whole. It aims to streamline and enhance the processes for achieving continuous authorization to operate (cATO), reflecting a continued push to shift from traditional, point-in-time authorizations to operate (ATOs) to a more dynamic and ongoing compliance model.

The new guide introduces several significant updates, including the introduction of specific security and development metrics required to achieve cATO, comprehensive evaluation criteria, practical advice on how to meet cATO requirements and a special emphasis on software supply chain security via software bills of material (SBOMs).

We break down the updates that are important to highlight if you’re already familiar with the cATO process. If you’re looking for a primer on cATO to get yourself up to speed, read our original blog post or click below to watch our webinar on-demand.

Continuous Authorization Metrics

A new addition to the corpus of information on cATO is the introduction of specific security and software development metrics that are required to be continuously monitored. Many of these come from the private sector DevSecOps best practices that have been honed by organizations at the cutting edge of this field, such as Google, Microsoft, Facebook and Amazon.

We’ve outlined the major ones below.

  1. Mean Time to Patch Vulnerabilities:
    • Description: Average time between the identification of a vulnerability in the DevSecOps Platform (DSOP) or application and the successful production deployment of a patch.
    • Focus: Emphasis on vulnerabilities with high to moderate impact on the application or mission.
  2. Trend Metrics:
    • Description: Metrics associated with security guardrails and control gates PASS/FAIL ratio over time.
    • Focus: Show improvements in development team efforts at developing secure code with each new sprint and the system’s continuous improvement in its security posture.
  3. Feedback Communication Frequency:
    • Description: Metrics to ensure feedback loops are in place, being used, and trends showing improvement in security posture.
  4. Effectiveness of Mitigations:
    • Description: Metrics associated with the continued effectiveness of mitigations against a changing threat landscape.
  5. Security Posture Dashboard Metrics:
    • Description: Metrics showing the stage of application and its security posture in the context of risk tolerances, security control compliance, and security control effectiveness results.
  6. Container Metrics:
    • Description: Measure the age of containers against the number of times they have been used in a subsystem and the residual risk based on the aggregate set of open security issues.
  7. Test Metrics:
    • Description: Percentage of test coverage passed, percentage of passing functional tests, count of various severity level findings, percentage of threat actor actions mitigated, security findings compared to risk tolerance, and percentage of passing security control compliance.

The overall thread with the metrics required is to quickly understand whether the overall security of the application is improving. If they aren’t this is a sign that something within the system is out of balance and is in need of attention.

Comprehensive and detailed evaluation criteria

Tucked away in Appendix B. “Requirements” is a detailed table that spells out the individual requirements that need to be met in order to achieve a cATO. This table is meant to improve the cATO process so that the individuals in a program that are implementing the requirements know the criteria they will be evaluated against. The goal being to reduce the amount of back-and-forth between the program and the Authorizing Official (AO) that is evaluating them.

Practical Implementation Advice

The ecosystem for DSOPs has evolved significantly since cATO was first announced in February 2022. Over the past 2+ years, a number of early adopters, such as Platform One have blazed a trail and learned all of the painful lessons in order to smooth the path for other organizations that are now looking to modernize their development practices. The advice in the implementation guide is a high-signal, low-noise distillation of these hard won lessons learned.

DevSecOps Platform (DSOP) Advice

If you’re more interested in writing software than operating a DSOP then you’ll want to focus your attention on pre-existing DSOP’s, commonly called DoD software factories.

We have written both a primer for understanding DoD software factories and an index of additional content that can quickly direct you to deep dives in specific content you’re interested in.

If you love to get your hands dirty and would rather have full control over your development environment, just be aware that this is specifically recommended against:

Build a new DSOP using hardened components (this is the most time-consuming approach and should be avoided if possible).

DevSecOps Culture Advice

While the DevSecOps culture and process advice is well-known in the private sector, it is still important to emphasize in the federal context that is currently transitioning to the modern software development paradigm.

  1. Bring the security team at the start of development and keep them involved throughout.
  2. Create secure agile processes to support the continued delivery of value without the introduction of unnecessary risk

Continuous Monitoring (ConMon) Advice

Ensure that all environments are continuously monitored (e.g., development, test and production). Utilize the security data collected from these environments to power and inform thresholds and triggers for active incident response. ConMon and ACD are separate pillars of cATO but need to be integrated so that information is flowing to the systems that can make best use of it. It is this integrated approach that delivers on the promise of significantly improved security and risk outcomes.

Active Cyber Defense (ACD) Advice

Both a Security Operations Center (SOC) and external CSSP are needed in order to achieve the Active Cyber Defense (ACD) pillar of cATO. On top of that, there also has to be a detailed incident response plan and personnel trained on it. While cATO’s goal is to automate as much of the security and incident response system as possible to reduce the burden of manual intervention. Humans in the loop are still an important component in order to tune the system and react with appropriate urgency.

Software Supply Chain Security (SSCS) Advice

The new implementation guide is very clear that a DSOP creates SBOMs for itself and any applications that pass through it. This is a mega-trend that has been sweeping over the software supply chain security industry for the past decade. It is now the consensus that SBOMs are the best abstraction and practice for securing software development in the age of composible and complex software.

The 3 (+1) Pillars of cATO

While the 3 pillars of cATO and its recommendation for SBOMs as the preferred software supply chain security tool were called out in the original cATO memo, the recently published implementation guide again emphasizes the importance of the 3 (+1) pillars of cATO.

The guide quotes directly from the memo:

In order to prevent any combination of human errors, supply chain interdictions, unintended code, and support the creation of a software bill of materials (SBOM), the adoption of an approved software platform and development pipeline(s) are critical.

This is a continuation of the DoD specifically, and the federal government generally, highlighting the importance of software supply chain security and software bills of material (SBOMs) as “critical” for achieving the 3 pillars of cATO. This is why Anchore refers to this as the “3 (+1) Pillars of cATO“.

  1. Continuous Monitoring (ConMon)
  2. Active Cyber Defense (ACD)
  3. DevSecOps (DSO) Reference Design
  4. Secure Software Supply Chain (SSSC)

Wrap-up

The release of the new DevSecOps Continuous Authorization Implementation Guide marks a significant advancement in the DoD’s approach to cybersecurity and compliance. With a focus on transitioning from traditional point-in-time Authorizations to Operate (ATOs) to a continuous authorization model, the guide introduces comprehensive updates designed to streamline the cATO process. The goal being to ease the burden of the process and help more programs modernize their security and compliance posture.

If you’re interested to learn more about the benefits and best practices of utilizing a DSOP (i.e., DoD software factory) in order to transform cATO compliance into a “switch flip”. Be sure to pick up a copy of our “DevSecOps for a DoD Software Factory: 6 Best Practices for Container Images” white paper. Click below to download.

Best Practices for DevSecOps in DoD Software Factories: A White Paper

The Department of Defense’s (DoD) Software Modernization Implementation Plan, unveiled in March 2023, represents a significant stride towards transforming software delivery timelines from years to days. This ambitious plan leverages the power of containers and modern DevSecOps practices within a DoD software factory.

Our latest white paper, titled “DevSecOps for a DoD Software Factory: 6 Best Practices for Container Images,” dives deep into the security practices for securing container images in a DoD software factory. It also details how Anchore Federal—a pivotal tool within this framework—supports these best practices to enhance security and compliance across multiple DoD software factories including the US Air Force’s Platform One, Iron Bank, and the US Navy’s Black Pearl.

Key Insights from the White Paper

  • Securing Container Images: The paper outlines six essential best practices ranging from using trusted base images to continuous vulnerability scanning and remediation. Each practice is backed by both DoD guidance and relevant NIST standards, ensuring alignment with federal requirements.
  • Role of Anchore Federal: As a proven tool in the arena of container image security, Anchore Federal facilitates these best practices by integrating seamlessly into DevSecOps workflows, providing continuous scanning, and enabling automated policy enforcement. It’s designed to meet the stringent security needs of DoD software factories, ready for deployment even in classified and air-gapped environments.
  • Supporting Rapid and Secure Software Delivery: With the DoD’s shift towards software factories, the need for robust, secure, and agile software delivery mechanisms has never been more critical. Anchore Federal is the turnkey solution for automating security processes and ensuring that all container images meet the DoD’s rigorous security and compliance requirements.

Download the White Paper Today

Empower your organization with the insights and tools needed for secure software delivery within the DoD ecosystem. Download our white paper now and take a significant step towards implementing best-in-class DevSecOps practices in your operations. Equip your teams with the knowledge and technology to not just meet, but exceed the modern security demands of the DoD’s software modernization efforts.

Navigate SSDF Attestation with this Practical Guide

The clock is ticking again for software producers selling to federal agencies. In the second half of 2024, CEOs or their designees must begin providing an SSDF attestation that their organization adheres to secure software development practices documented in NIST SSDF 800-218

Download our latest ebook to navigate through SSDF attestation quickly and adhere to timelines. 

SSDF attestation covers four main areas from NIST SSDF including: 

  1. Securing development environments, 
  2. Using automated tools to maintain trusted source code supply chains
  3. Maintaining provenance (e.g., via SBOMs) for internal code and third-party components, and 
  4. Using automated tools to check for security vulnerabilities.  

This new requirement is not to be taken lightly. It applies to all software producers, regardless of whether they provide a software end product as SaaS or on-prem, to any federal agency. The SSDF attestation deadline is June 11, 2024, for critical software and September 11, 2024, for all software. However, on-prem software developed before September 14, 2022, will only require SSDF attestation when a new major version is released. The bottom line is that most organizations will need to comply by 2024.

Companies will make their SSDF attestation through an online Common Form that covers the minimum secure software development requirements that software producers must meet. Individual agencies can add agency-specific instructions outside of the Common Form. 

Organizations that want to ensure they meet all relevant requirements can submit a third-party assessment instead of a CEO attestation. You must use a Third-Party Assessment Organization (3PAO) that is FedRAMP-certified or approved by an agency official.  This option is a no-brainer for cloud software producers who use a 3PAO for FedRAMP.

Details over details – so we put together a practical guide to the SSDF attestation requirements and how to meet them “SSDF Attestation 101: A Practical Guide for Software Producers”. We also included how Anchore Enterprise automates the SSDF attestation compliance by directly integrating into your software development pipeline and utilizing continuous policy scanning to detect issues before they hit production.