SSDF Attestation Template: Battle-tested Compliance Guidance

The CISA Secure Software Development Attestation form, commonly referred to as, SSDF attestation, was released earlier this year and with any new compliance framework, knowing the exact wording and details to provide in order to meet the compliance requirements can be difficult.

We feel you here. Anchore is heavily invested in the public sector and had to generate our own SSDF attestation for our platform, Anchore Enterprise. Having gone through the process ourselves and working with a number of customers that requested our expertise on this matter, we developed a document that helps you put together an SSDF attestation that will make a compliance officer’s heart sing.

Our goal with this document is to make SSDF attestation as easy as possible and demonstrate how Anchore Enterprise is an “easy button” that you can utilize to satisfy the majority of evidence needed to achieve compliance. We have already submitted in our own SSDF attestation and been approved, so we have confidence these answers will help get you over the line. You can find our SSDF attestation guide on our docs site.

Explore SSDF attestation in-depth with this eBook. Learn the benefits of the framework and how you can benefit from it.

How do I fill out the SSDF attestation form?

This is the difficult part, isn’t it? The SSDF attestation form looks very simple at a glance, but it has a number of sections that expect evidence to be attached that details how your organization secures both your development environments and production systems. Like all compliance standards, it doesn’t specify what will or won’t meet compliance for your organization, hence the importance of the evidence.

At Anchore, we both experienced this ourselves and helped our customers navigate this ambiguity. Out of these experiences we created a document that breaks down each item and what evidence was able to achieve compliance without being rejected by a compliance officer.

We have published this document on our Docs site for all other organizations to use as a template when attempting to meet SSDF attestation compliance.

Structure of the SSDF attestation form

The SSDF attestation is divided into 3 sections:

Section I

The first section is very short, it is where you list the type of attestation you are submitting and information about the product that you are attesting to meeting compliance.

Section II

This section is also short, the form is collecting contact information. CISA wants to be able to know how to get in contact with your organization and who is responsible for any questions or concerns that need to be addressed.

Section III

For all intents and purposes, Section III is the SSDF attestation form. This is where you will provide all of the technical supporting information to demonstrate that your organization complies with the requirements set out in the SSDF attestation form. 

The guide that Anchore has developed is focused specifically on how to fill out this section in a way that will meet the expectations of CISA compliance officers.

Where do I submit the SSDF attestation form?

If you are a US government vendor you can submit your organization’s completed form on the Repository for Software Attestations and Artifacts. You will need an account that can be requested on the login page. It normally takes a few days for the account to be created. Be sure to give yourself at least a week for it to be created. This can be done ahead of time while you’re gathering the information to fill out your form.

It’s also possible you will receive requests directly to pass along the form. Not every agency will use the repository. It’s even possible you will have non-government customers asking for the form. While it’s being mandated by the government, there’s a lot of good evidence in the document.

What tooling do I need to meet SSDF attestation compliance?

There are many ways in order to meet the technical requirements of SSDF attestation but there is also a well worn path. Anchore utilizes modern DevSecOps practices and assumes that the majority of our customers do as well. Below is a list of common DevSecOps tools that are typically used to help meet SSDF compliance

Endpoint Protection

Description: Endpoint protection tools secure individual devices (endpoints) that connect to a network. They protect against malware, detect and prevent intrusions, and provide real-time monitoring and response capabilities.

SSDF Requirement: [3.1] — “Separating and protecting each environment involved in developing and building software”

Examples: Jamf, Elastic, SentinelOne, etc.

Source Control

Description: Source control systems manage changes to source code over time. They help track modifications, facilitate collaboration among developers, and maintain different versions of code.

SSDF Requirement: [3.1] — “Separating and protecting each environment involved in developing and building software”

Examples: GitHub, GitLab, etc.

CI/CD Build Pipeline

Description: Continuous Integration/Continuous Deployment (CI/CD) pipelines automate the process of building, testing, and deploying software. They help ensure consistent and reliable software delivery.

SSDF Requirement: [3.1] — “Separating and protecting each environment involved in developing and building software”

Examples: Jenkins, GitLab, GitHub Actions, etc.

Single Sign-on (SSO)

Description: SSO allows users to access multiple applications with one set of login credentials. It enhances security by centralizing authentication and reducing the number of attack vectors.

SSDF Requirement: [3.1] — “Enforcing multi-factor authentication and conditional access across the environments relevant to developing and building software in a manner that minimizes security risk;”

Examples: Okta, Google Workspace, etc.

Security Event and Incident Management (SEIM)

Description: Monitoring tools provide real-time visibility into the performance and security of systems and applications. They can detect anomalies, track resource usage, and alert on potential issues.

SSDF Requirement: [3.1] — “Implementing defensive cybersecurity practices, including continuous monitoring of operations and alerts and, as necessary, responding to suspected and confirmed cyber incidents;”

Examples: Elasticsearch, Splunk, Panther, RunReveal, etc.

Audit Logging

Description: Audit logging captures a record of system activities, providing a trail of actions performed within the software development and build environments.

SSDF Requirement: [3.1] — “Regularly logging, monitoring, and auditing trust relationships used for authorization and access: i) to any software development and build environments; and ii) among components within each environment;”

Examples: Typically a built-in feature of CI/CD, SCM, SSO, etc.

Secrets Encryption

Description: Secrets encryption tools secure sensitive information such as passwords, API keys, and certificates used in the development and build processes.

SSDF Requirement: [3.1] — “Encrypting sensitive data, such as credentials, to the extent practicable and based on risk;”

Examples: Typically a built-in feature of CI/CD and SCM

Secrets Scanning

Description: Secrets scanning tools automatically detect and alert on exposed secrets in code repositories, preventing accidental leakage of sensitive information.

SSDF Requirement: [3.1] — “Encrypting sensitive data, such as credentials, to the extent practicable and based on risk;”

Examples: Anchore Secure or other container security platforms

OSS Component Inventory (+ Provenance)

Description: These tools maintain an inventory of open-source software components used in a project, including their origins and lineage (provenance).

SSDF Requirement: [3.3] — “The software producer maintains provenance for internal code and third-party components incorporated into the software to the greatest extent feasible;”

Examples: Anchore SBOM or other SBOM generation and management platform

Vulnerability Scanning

Description: Vulnerability scanning tools automatically detect security weaknesses in code, dependencies, and infrastructure.

SSDF Requirement: [3.4] — “The software producer employs automated tools or comparable processes that check for security vulnerabilities. In addition: a) The software producer operates these processes on an ongoing basis and prior to product, version, or update releases;”

Examples: Anchore Secure or other software composition analysis (SCA) platform

Vulnerability Management and Remediation Runbook

Description: This is a process and set of guidelines for addressing discovered vulnerabilities, including prioritization and remediation steps.

SSDF Requirement: [3.4] — “The software producer has a policy or process to address discovered security vulnerabilities prior to product release; and The software producer operates a vulnerability disclosure program and accepts, reviews, and addresses disclosed software vulnerabilities in a timely fashion and according to and timelines specified in the vulnerability disclosure program or applicable policies.”

Examples: This is not necessarily a tool but an organizational SLA on security operations. For reference Anchore has included a screenshot from our vulnerability management guide.

Next Steps

If your organization currently provides software services to a federal agency or is looking to in the future, Anchore is here to help you in your journey. Reach out to our team and learn how you can integrate continuous and automated compliance directly into your CI/CD build pipeline with Anchore Enterprise.

Learn about the importance of both FedRAMP and SSDF compliance for selling to the federal government.

Ad for webinar by Anchore about how to sell software services to the federal government by achieving FedRAMP or SSDF Compliance

Anchore at Billington CyberSecurity Summit: Automating Defense in the AI Era

Are you gearing up for the 15th Annual Billington CyberSecurity Summit? So are we! The Anchore team will be front and center in the exhibition hall throughout the event, ready to showcase how we’re revolutionizing cybersecurity in the age of AI.

This year’s summit promises to be a banger, highlighting the evolution in cybersecurity as the latest iteration of AI takes center stage. While large language models (LLMs) like ChatGPT have been making waves across industries, the cybersecurity realm is still charting its course in this new AI-driven landscape. But make no mistake – this is no time to rest on our laurels.

As blue teams explore innovative ways to harness LLMs, cybercriminals are working overtime to weaponize the same technology. If there’s one lesson we’ve learned from every software and AI hype cycle: automation is key. As adversaries incorporate novel automations into their tactics, defenders must not just keep pace—they need to get ahead.

At Anchore, we’re all-in with this strategy. The Anchore Enterprise platform is purpose-built to automate and scale cybersecurity across your entire software development lifecycle. By automating continuous vulnerability scanning and compliance in your DevSecOps pipeline, we’re equipping warfighters with the tools they need to outpace adversaries that never sleep.

Ready to see how Anchore can transform your cybersecurity posture in the AI era? Stop by our booth for a live demo. Don’t miss this opportunity to stay ahead of the curve—book a meeting (below) with our team and take the first step towards a more secure tomorrow.

Anchore at the Billington CyberSecurity Summit

Date: September 3–6, 2024

Location: The Ronald Reagan Building and International Trade Center in Washington, DC

Our team is looking forward to meeting you! Book a demo session in advance to ensure a preferred slot.

Anchore’s Showcase: DevSecOps and Automated Compliance

We will be demonstrating the Anchore Enterprise platform at the event. Our showcase will focus on:

  1. Software Composition Analysis (SCA) for Cloud-Native Environments: Learn how our tools can help you gain visibility into your software supply chain and manage risk effectively.
  2. Automated SBOM Generation and Management: Discover how Anchore simplifies the creation and maintenance of Software Bills of Materials (SBOMs), the foundational component in software supply chain security.
  3. Continuous Scanning for Vulnerabilities, Secrets, and Malware: See our advanced scanning capabilities in action, designed to protect your applications across the DevSecOps pipeline or DoD software factory.
  4. Automated Compliance Enforcement: Experience how Anchore can streamline compliance with key standards such as cATO, RAISE 2.0,  NIST, CISA, and FedRAMP, saving time and reducing human error.

We invite all attendees to visit our booth to learn more about how Anchore’s DevSecOps and automated compliance solutions can enhance your organization’s security posture in the age of AI and cloud computing.

Event Highlights

Still on the fence about whether to attend? Here is a quick run-down to help get you off of the fence. This year’s summit, themed “Advancing Cybersecurity in the AI Age,” will feature more than 40 sessions and breakouts, covering critical topics such as:

  • The increasing impact of artificial intelligence on cybersecurity
  • Cloud security challenges and solutions
  • Proactive approaches to technical risk management
  • Emerging cyber risks and defense strategies
  • Data protection against breaches and insider threats
  • The intersection of cybersecurity and critical infrastructure

The event will showcase fireside chats with top government officials, including FBI Deputy Director Paul Abbate, Chairman of the Joint Chiefs of Staff General CQ Brown, Jr., and U.S. Cyber Command Commander General Timothy D. Haugh, among others.

Next Steps and Additional Resources

Join us at the Billington Cybersecurity Summit to network with industry leaders, gain valuable insights, and explore innovative technologies that are shaping the future of cybersecurity. We look forward to seeing you there!

If you are interested in the Anchore Enterprise platform and can’t wait till the show, here are some resources to help get you started:

Learn about best practices that are setting new standards for security in DoD software factories.

Anchore Awarded DoD ESI DevSecOps Phase II Agreement

The Department of Defense (DoD) Enterprise Software Initiative (ESI) has awarded Anchore inclusion in its DevSecOps program, which is part of the ESI’s DevSecOps Phase II enterprise agreements.

The DoD ESI’s main objective is to streamline the acquisition process for software and services across the DoD, in order to gain significant cost savings and improve efficiency. Admittance into the ESI program validates Anchore’s commitment to be a trusted partner to the DoD, delivering advanced container vulnerability scanning as well as SBOM management solutions that meet the most stringent compliance and security requirements.

Anchore’s inclusion in the DoD ESI DevSecOps Phase II agreement is a testament to our commitment to delivering cutting-edge software supply chain security solutions. This milestone enables us to more efficiently support the DoD’s critical missions by providing them with the tools they need to secure their software development pipelines. Our continued partnership with the DoD reinforces Anchore’s position as a trusted leader in SBOM-powered DevSecOps and container security.

—Tim Zeller, EVP Sales & Marketing

The agreements also included DevSecOps luminaries Hashicorp and Rancher Government as well as Cloudbees, Infoblox, GitLab, Crowdstrike, F5 Networks; all are now part of the preferred vendor list for all DoD missions that require cybersecurity solutions, generally, and software supply chain security, specifically.

Anchore is steadily growing their presence on federal contracts and catalogues such as Iron Patriot & Minerva, GSA, 2GIT, NASA SEWP, ITES and most recently also JFAC (Joint Federated Assurance Center).

What does this mean?

Similar to the GSA Advantage marketplace, DoD missions can now procure Anchore through the fully negotiated and approved ESI Agreements on the Solutions for Enterprise-Wide Procurement (SEWP) Marketplace. 

Anchore’s History with DoD

This award continues Anchore’s deepening relationship with the DoD. Starting in 2020, the DoD has vetted and approved Anchore’s container vulnerability scanning tools. Anchore is named in both the DoD Container Image Creation and Deployment Guide and the DoD Container Hardening Process Guide as recommended solutions.

The same year, Anchore was selected by the US Air Force’s Platform One to become the software supply chain vendor to implement the best practices in the above guides for all software built on the platform. Read our case study on how Anchore partnered with Platform One to build the premier DevSecOps platform for the DoD.

The following year, Anchore won the Small Business Innovation Research (SBIR) Phase III contract with Platform One to integrate directly into the Iron Bank container image process. If your image has achieved Iron Bank certification it is because Anchore’s solution has given it a passing grade. Read more about this DevSecOps success story in our case study with the Iron Bank.

Due to the success of Platform One within the US Air Force, in 2022 Anchore partnered with the US Navy to secure the Black Pearl DevSecOps platform. Similar to Platform One, Black Pearl is the go-to standard for modern software development within the Department of the Navy (DON) software development.

As Anchore continued to expand its relationship with the DoD and federal agencies, its offerings became available for purchase through the online government marketplaces and contracts such as GSA Advantage and Second Generation IT Blanket Purchase Agreements (2GIT), NASA SEWP, Iron Patriot/Minerva, ITES and JFAC. The ESI’s DevSecOps Phase II award was built on the back of all of the previous success stories that came before it. 

Achieving ATO is now easier with the inclusion of Anchore into the DoD ESI. Read our white paper on DoD software factory best practices to reach cATO or RAISE 2.0 compliance in days versus months.

We advise on best practices that are setting new standards for security and efficiency in DoD software factories, such as: Hardening container images, automation for policy enforcement and continuous monitoring for vulnerabilities.

DevSecOps Evolution: How DoD Software Factories Are Reshaping Federal Compliance

Anchore’s Vice President of Security, Josh Bressers recently did an interview with Fed Gov Today about the role of automation in DevSecOps and how it is impacting the US federal government. We’ve condensed the highlights of the interview into a snackable blog post below.

Automation is the foundation of DevSecOps

Automation isn’t just a buzzword but is actually the foundation of DevSecOps. It is what gives meaning to marketing taglines like “shift left”. The point of DevSecOps is to create automated workflows that provide feedback to software developers as they are writing the application. This unwinds the previous practice of  artificially grouping all of the “compliance” or “security” tasks into large blocks at the end of the development process. The challenge with this pattern is that it delays feedback and design decisions are made that become difficult to undo after development has completed. By inverting the narrative and automating feedback as design decisions are made, developers are able to prevent compliance or security issues before they become deeply embedded into the software.

DoD Software Factories are leading the way in DevSecOps adoption

The US Department of Defense (DoD) is at the forefront of implementing DevSecOps through their DoD software factory model. The US Navy’s Black Pearl and the Air Force’s Platform One are perfect examples of this program. These organizations are leveraging automation to streamline compliance work. Instead of relying on manual documentation ahead of Authority to Operate (ATO) reviews, automated workflows built directly into the software development pipeline provide direct feedback to developers. This approach has proven highly effective, Bressers emphasizes this in his interview:

It’s obvious why the DoD software factory model is catching on. It’s because they work. It’s not just talk, it’s actually working. There’s many organizations that have been talking about DevSecOps for a long time. There’s a difference between talking and doing. Software factories are doing and it’s amazing.

—Josh Bressers, VP of Security, Anchore

Benefits of compliance automation

By giving compliance the same treatment as security (i.e., automate all the things), tasks that once took weeks or even months, can now be completed in minutes or hours. This dramatic reduction in time-to-compliance not only accelerates development cycles but also allows teams to focus on collaboration and solution delivery rather than getting bogged down in procedural details. The result is a “shift left” approach that extends beyond security to compliance as well. When compliance is integrated early in the development process the benefits cascade down the entire development waterfall.

Compliance automation is shifting the policy checks left into the software development process. What this means is that once your application is finished; instead of the compliance taking weeks or months, we’re talking hours or minutes.

—Josh Bressers, VP of Security, Anchore

Areas for improvement

While automation is crucial, there are still several areas for improvement in DevSecOps environments. Key focus areas include ensuring developers fully understand the automated processes, improving communication between team members and agencies, and striking the right balance between automation and human oversight. Bressers emphasizes the importance of letting “people do people things” while leveraging computers for tasks they excel at. This approach fosters genuine collaboration and allows teams to focus on meaningful work rather than simply checking boxes to meet compliance requirements.

Standardizing communication workflows with integrated developer tools

Software development pipelines are primarily platforms to coordinate the work of distributed teams of developers. They act like old-fashioned switchboard operators that connect one member of the development team to the next as they hand-off work in the development production line. Leveraging developer tooling like GitLab or GitHub standardizes communication workflows. These platforms provide mechanisms for different team members to interact across various stages of the development pipeline. Teams can easily file and track issues, automatically pass or fail tests (e.g., compliance tests), and maintain a searchable record of discussions. This approach facilitates better understanding between developers and those identifying issues, leading to more efficient problem-solving and collaboration.

The government getting ahead of the private sector: an unexpected narrative inversion

In a surprising turn of events, Bressers points out that government agencies are now leading the way in DevSecOps implementation by integrating automated compliance. Historically often seen as technologically behind, federal agencies, through the DoD software factory model, are setting new standards that are likely to influence the private sector. As these practices become more widespread, contractors and private companies working with the government will need to adapt to these new requirements. This shift is evident in recent initiatives like the SSDF attestation questionnaire and White House Executive Order (EO) 14028. These initiatives are setting new expectations for federal contractors, signaling a broader move towards making compliance a native pillar of DevSecOps.

This is one of the few instances in recent memory where the government is truly leading the way. Historically the government has often been the butt of jokes about being behind in technology but these DoD software factories are absolutely amazing. The next thing that we’re going to see is the compliance expectations that are being built into these DoD software factories will seep out into the private sector. The SSDF attestation and the White House Executive Order are only the beginning. Ironically my expectation is everyone is going to have to start paying attention to this, not just federal agencies.

—Josh Bressers, VP of Security, Anchore

Next Steps

If you’re interested to learn more about how to future-proof your software supply chain with compliance automation via the DoD software factory model, be sure to read our white paper.

If you’d like to hear the interview in full, be sure to watch it on Fed Gov Today’s Youtube channel.

Introduction to the DoD Software Factory

In the rapidly evolving landscape of national defense and cybersecurity, the concept of a Department of Defense (DoD) software factory has emerged as a cornerstone of innovation and security. These software factories represent an integration of the principles and practices found within the DevSecOps movement, tailored to meet the unique security requirements of the DoD and Defense Industrial Base (DIB). 

By fostering an environment that emphasizes continuous monitoring, automation, and cyber resilience, DoD Software Factories are at the forefront of the United States Government’s push towards modernizing its software and cybersecurity capabilities. This initiative not only aims to enhance the velocity of software development but also ensures that these advancements are achieved without compromising on security, even against the backdrop of an increasingly sophisticated threat landscape.

Building and running a DoD software factory is so central to the future of software development that “Establish a Software Factory” is the one of the explicitly named plays from the DoD DevSecOps Playbook. On top of that, the compliance capstone of the authorization to operate (ATO) or its DevSecOps infused cousin the continuous ATO (cATO) effectively require a software factory in order to meet the requirements of the standard. In this blog post, we’ll break down the concept of a DoD software factory and a high-level overview of the components that make up one.

What is a DoD software factory?

A Department of Defense (DoD) Software Factory is a software development pipeline that embodies the principles and tools of the larger DevSecOps movement with a few choice modifications that conform to the extremely high threat profile of the DoD and DIB. It is part of the larger software and cybersecurity modernization trend that has been a central focus for the United States Government in the last two decades.

The goal of a DoD Software Factory is aimed at creating an ecosystem that enables continuous delivery of secure software that meet the needs of end-users while ensuring cyber resilience (a DoD catchphrase that emphasizes the transition from point-in-time security compliance to continuous security compliance). In other words, the goal is to leverage automation of software security tasks in order to fulfill the promise of the DevSecOps movement to increase the velocity of software development.

What is an example of a DoD software factory?

Platform One is the canonical example of a DoD software factory. Run by the US Air Force, it offers both a comprehensive portfolio of software development tools and services. It has come to prominence due to its hosted services like Repo One for source code hosting and collaborative development, Big Bang for a end-to-end DevSecOps CI/CD platform and the Iron Bank for centralized container storage (i.e., container registry). These services have led the way to demonstrating that the principles of DevSecOps can be integrated into mission critical systems while still preserving the highest levels of security to protect the most classified information.

If you’re interested to learn more about how Platform One has unlocked the productivity bonus of DevSecOps while still maintaining DoD levels of security, watch our webinar with Camdon Cady, Chief of Operations and Chief Technology Officer of Platform One.

Who does it apply to?

Federal Service Integrators (FSI)

Any organization that works with the DoD as a federal service integrator will want to be intimately familiar with DoD software factories as they will either have to build on top of existing software factories or, if the mission/program wants to have full control over their software factory, be able to build their own for the agency.

Department of Defense (DoD) Mission

Any Department of Defense (DoD) mission will need to be well-versed on DoD software factories as all of their software and systems will be required to run on a software factory as well as both reach and maintain a cATO.

What are the components of a DoD Software Factory?

A DoD software factory is composed of both high-level principles and specific technologies that meet these principles. Below are a list of some of the most significant principles of a DoD software factory:

Principles of DevSecOps embedded into a DoD software factory

  1. Breakdown organizational silos
    • This principle is borrowed directly from the DevSecOps movement, specifically the DoD aims to integrate software development, test, deployment, security and operations into a single culture with the organization.
  2. Open source and reusable code
    • Composable software building blocks is another principle of the DevSecOps that increases productivity and reduces security implementation errors from developers writing secure software packages that they are not experts in.
  3. Immutable Infrastructure-as-Code (IaC)
    • This principle focuses on treating the infrastructure that software runs on as ephemeral and managed via configuration rather than manual systems operations. Enabled by cloud computing (i.e., hardware virtualization) this principle increases the security of the underlying infrastructure through templated secure-by-design defaults and reliability of software as all infrastructure has to be designed to fail at any moment.
  4. Microservices architecture (via containers)
    • Microservices are a design pattern that creates smaller software services that can be built and scale independently of each other. This principle allows for less complex software that only performs a limited set of behavior.
  5. Shift Left
    • Shift left is the DevSecOps principle that re-frames when and how security testing is done in the software development lifecycle. The goal is to begin security testing while software is being written and tested rather than after the software is “complete”. This prevents insecure practices from cascading into significant issues right as software is ready to be deployed.
  6. Continuous improvement through key capabilities
    • The principle of continuous improvement is a primary characteristic of the DevSecOps ethos but the specific key capabilities that are defined in the DoD DevSecOps playbook are what make this unique to the DoD.
  7. Define a DevSecOps pipeline
    • A DevSecOps pipeline is the system that utilizes all of the preceding principles in order to create the continuously improving security outcomes that is the goal of the DoD software factory program.
  8. Cyber resilience
    • Cyber resiliency is the goal of a DoD software factory, is it defined as, “the ability to anticipate, withstand, recover from, and adapt to adverse conditions, stresses, attacks, or compromises on the systems that include cyber resources.”

Common tools and systems of a DoD software factory

  1. Code Repository (e.g., Repo One)
    • Where software source code is stored, managed and collaborated on.
  2. CI/CD Build Pipeline (e.g., Big Bang)
    • The system that automates the creation of software build artifacts, tests the software and packages the software for deployment.
  3. Artifact Repository (e.g., Iron Bank)
    • The storage system for software components used in development and the finished software artifacts that are produced from the build process.
  4. Runtime Orchestrator and Platform (e.g., Big Bang)
    • The deployment system that hosts the software artifacts pulled from the registry and keeps the software running so that users can access it.

How do I meet the security requirements for a DoD Software Factory? (Best Practices)

Use a pre-existing software factory

The benefit of using a pre-existing DoD software factory is the same as using a public cloud provider; someone else manages the infrastructure and systems. What you lose is the ability to highly customize your infrastructure to your specific needs. What you gain is the simplicity of only having to write software and allow others with specialized skill sets to deal with the work of building and maintaining the software infrastructure. When you are a car manufacturer, you don’t also want to be a civil engineering firm that designs roads.

To view existing DoD software factories, visit the Software Factory Ecosystem Coalition website.

Map of all DoD software factories in the US.

Roll your own by following DoD best practices 

If you need the flexibility and customization of managing your own software factory then we’d recommend following the DoD Enterprise DevSecOps Reference Design as the base framework. There are a few software supply chain security recommendations that we would make in order to ensure that things go smoothly during the authorization to operate (ATO) process:

  1. Continuous vulnerability scanning across all stages of CI/CD pipeline
    • Use a cloud-native vulnerability scanner that can be directly integrated into your CI/CD pipeline and called automatically during each phase of the SDLC
  2. Automated policy checks to enforce requirements and achieve ATO
    • Use a cloud-native policy engine in tandem with your vulnerability scanner in order to automate the reporting and blocking of software that is a security threat and a compliance risk
  3. Remediation feedback
    • Use a cloud-native policy engine that can provide automated remediation feedback to developers in order to maintain a high velocity of software development
  4. Compliance (Trust but Verify)
    • Use a reporting system that can be directly integrated with your CI/CD pipeline to create and collect the compliance artifacts that can prove compliance with DoD frameworks (e.g., CMMC and cATO)
  5. Air-gapped system

Is a software factory required in order to achieve cATO?

Technically, no. Effectively, yes. A cATO requires that your software is deployed on an Approved DoD Enterprise DevSecOps Reference Design not a software factory specifically. If you build your own DevSecOps platform that meets the criteria for the reference design then you have effectively rolled your own software factory.

How Anchore can help

The easiest and most effective method for achieving the security guarantees that a software factory is required to meet for its software supply chain are by using: 

  1. An SBOM generation tool that integrates directly into your software development pipeline
  2. A container vulnerability scanner that integrates directly into your software development pipeline
  3. A policy engine that integrates directly into your software development pipeline
  4. A centralized database to store all of your software supply chain security logs
  5. A query engine that can continuously monitor your software supply chain and automate the creation of compliance artifacts

These are the primary components of both Anchore Enterprise and Anchore Federal cloud native, SBOM-powered software composition analysis (SCA) platforms that provide an end-to-end software supply chain security to holistically protect your DevSecOps pipeline and automate compliance. This approach has been validated by the DoD, in fact the DoD’s Container Hardening Process Guide specifically named Anchore Federal as a recommended container hardening solution.

Learn more about how Anchore fuses DevSecOps and DoD software factories.

Conclusion and Next Steps

DoD software factories can come off as intimidating at first but hopefully we have broken them down into a more digestible form. At their core they reflect the best of the DevSecOps movement with specific adaptations that are relevant to the extreme threat environment that the DoD has to operate in, as well as, the intersecting trend of the modernization of federal security compliance standards.

If you’re looking to dive deeper into all things DoD software factory, we have a white paper that lays out the 6 best practices for container images in highly secure environments. Download the white paper below.

Navigating the Updates to cATO: Critical Changes & Practical Advice for DoD Programs

On April 11, the US Department of Defense (DoD)’s Chief Information Officer (CIO) released the DevSecOps Continuous Authorization Implementation Guide, marking the next step in the evolution of the DoD’s efforts to modernize its security and compliance ecosystem. This guide is part of a larger trend of compliance modernization that is transforming the US public sector and the global public sector as a whole. It aims to streamline and enhance the processes for achieving continuous authorization to operate (cATO), reflecting a continued push to shift from traditional, point-in-time authorizations to operate (ATOs) to a more dynamic and ongoing compliance model.

The new guide introduces several significant updates, including the introduction of specific security and development metrics required to achieve cATO, comprehensive evaluation criteria, practical advice on how to meet cATO requirements and a special emphasis on software supply chain security via software bills of material (SBOMs).

We break down the updates that are important to highlight if you’re already familiar with the cATO process. If you’re looking for a primer on cATO to get yourself up to speed, read our original blog post or click below to watch our webinar on-demand.

Continuous Authorization Metrics

A new addition to the corpus of information on cATO is the introduction of specific security and software development metrics that are required to be continuously monitored. Many of these come from the private sector DevSecOps best practices that have been honed by organizations at the cutting edge of this field, such as Google, Microsoft, Facebook and Amazon.

We’ve outlined the major ones below.

  1. Mean Time to Patch Vulnerabilities:
    • Description: Average time between the identification of a vulnerability in the DevSecOps Platform (DSOP) or application and the successful production deployment of a patch.
    • Focus: Emphasis on vulnerabilities with high to moderate impact on the application or mission.
  2. Trend Metrics:
    • Description: Metrics associated with security guardrails and control gates PASS/FAIL ratio over time.
    • Focus: Show improvements in development team efforts at developing secure code with each new sprint and the system’s continuous improvement in its security posture.
  3. Feedback Communication Frequency:
    • Description: Metrics to ensure feedback loops are in place, being used, and trends showing improvement in security posture.
  4. Effectiveness of Mitigations:
    • Description: Metrics associated with the continued effectiveness of mitigations against a changing threat landscape.
  5. Security Posture Dashboard Metrics:
    • Description: Metrics showing the stage of application and its security posture in the context of risk tolerances, security control compliance, and security control effectiveness results.
  6. Container Metrics:
    • Description: Measure the age of containers against the number of times they have been used in a subsystem and the residual risk based on the aggregate set of open security issues.
  7. Test Metrics:
    • Description: Percentage of test coverage passed, percentage of passing functional tests, count of various severity level findings, percentage of threat actor actions mitigated, security findings compared to risk tolerance, and percentage of passing security control compliance.

The overall thread with the metrics required is to quickly understand whether the overall security of the application is improving. If they aren’t this is a sign that something within the system is out of balance and is in need of attention.

Comprehensive and detailed evaluation criteria

Tucked away in Appendix B. “Requirements” is a detailed table that spells out the individual requirements that need to be met in order to achieve a cATO. This table is meant to improve the cATO process so that the individuals in a program that are implementing the requirements know the criteria they will be evaluated against. The goal being to reduce the amount of back-and-forth between the program and the Authorizing Official (AO) that is evaluating them.

Practical Implementation Advice

The ecosystem for DSOPs has evolved significantly since cATO was first announced in February 2022. Over the past 2+ years, a number of early adopters, such as Platform One have blazed a trail and learned all of the painful lessons in order to smooth the path for other organizations that are now looking to modernize their development practices. The advice in the implementation guide is a high-signal, low-noise distillation of these hard won lessons learned.

DevSecOps Platform (DSOP) Advice

If you’re more interested in writing software than operating a DSOP then you’ll want to focus your attention on pre-existing DSOP’s, commonly called DoD software factories.

We have written both a primer for understanding DoD software factories and an index of additional content that can quickly direct you to deep dives in specific content you’re interested in.

If you love to get your hands dirty and would rather have full control over your development environment, just be aware that this is specifically recommended against:

Build a new DSOP using hardened components (this is the most time-consuming approach and should be avoided if possible).

DevSecOps Culture Advice

While the DevSecOps culture and process advice is well-known in the private sector, it is still important to emphasize in the federal context that is currently transitioning to the modern software development paradigm.

  1. Bring the security team at the start of development and keep them involved throughout.
  2. Create secure agile processes to support the continued delivery of value without the introduction of unnecessary risk

Continuous Monitoring (ConMon) Advice

Ensure that all environments are continuously monitored (e.g., development, test and production). Utilize the security data collected from these environments to power and inform thresholds and triggers for active incident response. ConMon and ACD are separate pillars of cATO but need to be integrated so that information is flowing to the systems that can make best use of it. It is this integrated approach that delivers on the promise of significantly improved security and risk outcomes.

Active Cyber Defense (ACD) Advice

Both a Security Operations Center (SOC) and external CSSP are needed in order to achieve the Active Cyber Defense (ACD) pillar of cATO. On top of that, there also has to be a detailed incident response plan and personnel trained on it. While cATO’s goal is to automate as much of the security and incident response system as possible to reduce the burden of manual intervention. Humans in the loop are still an important component in order to tune the system and react with appropriate urgency.

Software Supply Chain Security (SSCS) Advice

The new implementation guide is very clear that a DSOP creates SBOMs for itself and any applications that pass through it. This is a mega-trend that has been sweeping over the software supply chain security industry for the past decade. It is now the consensus that SBOMs are the best abstraction and practice for securing software development in the age of composible and complex software.

The 3 (+1) Pillars of cATO

While the 3 pillars of cATO and its recommendation for SBOMs as the preferred software supply chain security tool were called out in the original cATO memo, the recently published implementation guide again emphasizes the importance of the 3 (+1) pillars of cATO.

The guide quotes directly from the memo:

In order to prevent any combination of human errors, supply chain interdictions, unintended code, and support the creation of a software bill of materials (SBOM), the adoption of an approved software platform and development pipeline(s) are critical.

This is a continuation of the DoD specifically, and the federal government generally, highlighting the importance of software supply chain security and software bills of material (SBOMs) as “critical” for achieving the 3 pillars of cATO. This is why Anchore refers to this as the “3 (+1) Pillars of cATO“.

  1. Continuous Monitoring (ConMon)
  2. Active Cyber Defense (ACD)
  3. DevSecOps (DSO) Reference Design
  4. Secure Software Supply Chain (SSSC)

Wrap-up

The release of the new DevSecOps Continuous Authorization Implementation Guide marks a significant advancement in the DoD’s approach to cybersecurity and compliance. With a focus on transitioning from traditional point-in-time Authorizations to Operate (ATOs) to a continuous authorization model, the guide introduces comprehensive updates designed to streamline the cATO process. The goal being to ease the burden of the process and help more programs modernize their security and compliance posture.

If you’re interested to learn more about the benefits and best practices of utilizing a DSOP (i.e., DoD software factory) in order to transform cATO compliance into a “switch flip”. Be sure to pick up a copy of our “DevSecOps for a DoD Software Factory: 6 Best Practices for Container Images” white paper. Click below to download.

Best Practices for DevSecOps in DoD Software Factories: A White Paper

The Department of Defense’s (DoD) Software Modernization Implementation Plan, unveiled in March 2023, represents a significant stride towards transforming software delivery timelines from years to days. This ambitious plan leverages the power of containers and modern DevSecOps practices within a DoD software factory.

Our latest white paper, titled “DevSecOps for a DoD Software Factory: 6 Best Practices for Container Images,” dives deep into the security practices for securing container images in a DoD software factory. It also details how Anchore Federal—a pivotal tool within this framework—supports these best practices to enhance security and compliance across multiple DoD software factories including the US Air Force’s Platform One, Iron Bank, and the US Navy’s Black Pearl.

Key Insights from the White Paper

  • Securing Container Images: The paper outlines six essential best practices ranging from using trusted base images to continuous vulnerability scanning and remediation. Each practice is backed by both DoD guidance and relevant NIST standards, ensuring alignment with federal requirements.
  • Role of Anchore Federal: As a proven tool in the arena of container image security, Anchore Federal facilitates these best practices by integrating seamlessly into DevSecOps workflows, providing continuous scanning, and enabling automated policy enforcement. It’s designed to meet the stringent security needs of DoD software factories, ready for deployment even in classified and air-gapped environments.
  • Supporting Rapid and Secure Software Delivery: With the DoD’s shift towards software factories, the need for robust, secure, and agile software delivery mechanisms has never been more critical. Anchore Federal is the turnkey solution for automating security processes and ensuring that all container images meet the DoD’s rigorous security and compliance requirements.

Download the White Paper Today

Empower your organization with the insights and tools needed for secure software delivery within the DoD ecosystem. Download our white paper now and take a significant step towards implementing best-in-class DevSecOps practices in your operations. Equip your teams with the knowledge and technology to not just meet, but exceed the modern security demands of the DoD’s software modernization efforts.

An Outline for Getting Up to Speed on the DoD Software Factory

This blog post is meant as a gateway to all things DoD software factory. We highlight content from across the Anchore universe that can help anyone get up to speed on what a DoD software factory is, why to use it and how to build one. This blog post is meant as an index to be scanned for the topics that are most interesting to you as the reader with links to more detailed content.

What is a DoD Software Factory?

The short answer is a DoD Software Factory is an implementation of the DoD Enterprise DevSecOps Reference Design. A slightly longer answer comes from our DoD software factory primer:

A Department of Defense (DoD) Software Factory is a software development pipeline that embodies the principles and tools of the larger DevSecOps movement with a few choice modifications that conform to the extremely high threat profile of the DoD and DIB.

Note that the diagram below looks like a traditional DevOps pipeline. The difference being that there are security controls layered into this environment that automate software component inventory, vulnerability scanning and policy enforcement to meet the requirements to be considered a DoD software factory.

Got the basics down? Go deeper and learn how Anchore can help you put the Sec into DevSecOps Reference Design by reading our DoD Software Factory Best Practices white paper.

Why do I want to utilize a DoD Software Factory?

For DoD programs, the primary reason to utilize a DoD software factory is that it is a requirement for achieving a continuous authorization to operation (cATO). The cATO standard specifically calls out that software is developed in a system that meets the DoD Enterprise DevSecOps Reference Design. A DoD software factory is the generic implementation of this design standard.

For Federal Service Integrators (FSIs), the biggest reason to utilize a DoD software factory is that it is a standard approach to meeting DoD compliance and certification standards. By meeting a standard, such as CMMC Level 2, you expand your opportunity to work with DoD programs.

Continuous Authorization to Operate (cATO)

If you’re looking for more information on cATO, Anchore has written a comprehensive guide on navigating the cATO process that can be found on our blog:

DevSecOps for a DoD Software Factory: 6 Best Practices for Container Images

The shift from traditional software delivery to DevSecOps in the Department of Defense (DoD) represents a crucial evolution in how software is built, secured, and deployed with a focus on efficiencies and speed. Our white paper advises on best practices that are setting new standards for security and efficiency in DoD software factories.

Cybersecurity Maturity Model Certification (CMMC)

The CMMC is the certification standard that is used by the DoD to vet FSIs from the defense industrial base (DIB). This is the gold standard for demonstrating to the DoD that your organization takes security seriously enough to work with the highest standards of any DoD program. The security controls that the CMMC references when determining certification are outlined in NIST 800-171. There are 17 total families of security controls that an organization has to meet in order to meet the CMMC Level 2 certification and a DoD software factory can help check a number of these off of the list.

The specific families of controls that a DoD software factory helps meet are:

  • Access Control (AC)
  • Audit and Accountability (AU)
  • Configuration Management (CM)
  • Incident Response (IR)
  • Maintenance (MA)
  • Risk Assessment (RA)
  • Security Assessment and Authorization (CA)
  • System and Communications Protection (SC)
  • System and Information Integrity (SI)
  • Supply Chain Risk Management (SR)

If you’re looking for more information on how apply software supply chain security to meet the CMMC, Anchore has published two blog posts on the topic:

NIST SP 800-171 & Controlled Unclassified Data: A Guide in Plain English

  • NIST SP 800-171 is the canonical list of security controls for meeting CMMC Level 2 certification. Anchore has broken down the entire 800-171 standard to give you an easy to understand overview.

Automated Policy Enforcement for CMMC with Anchore Enterprise

  • Policy Enforcement is the backbone of meeting the monitoring, enforcement and reporting requirements of the CMMC. In this blog post, we break down how Anchore Federal can meet a number of the controls specifically related to software supply chain security that are outlined in NIST 800-171.

How do I meet the DevSecOps Reference Design requirements?

The easy answer is by utilizing a DoD Software Factory Managed Service Provider (MSP). Below in the User Stories section, we deep dive into the US Air Force’s Platform One given they are the preeminent DoD software factory.

The DIY answer involves carefully reading and implementing the DoD Enterprise DevSecOps Reference Design. This document is massive but there are a few shortcuts you can utilize to help expedite your journey. 

Container Hardening

Deciding to utilize software containers in a DevOps pipeline is almost a foregone conclusion at this point. What is less well known is how to secure your containers, especially to meet the standards of a DoD software factory.

The DoD has published two guides that can help with this. The first is the DoD Container Hardening Guide, and the second is the Container Image Creation and Deployment Guide. Both name Anchore Federal as an approved container hardening scanner.

Anchore has published a number of blogs and even a white paper that condense the information in both of these guides into more digestible content. See below:

Container Security for U.S. Government Information Systems

  • This comprehensive white paper breaks down how to achieve a container build and deployment system that is hardened to the standards of a DoD software factory.

Enforcing the DoD Container Image and Deployment Guide with Anchore Federal

  • This blog post is great for those who are interested to see how Anchore Federal can turn all of the requirements of the DoD Container Hardening Guide and the Container Image Creation and Deployment Guide into an easy button.

Deep Dive into Anchore Federal’s Container Image Inspection and Vulnerability Management

  • This blog post deep dives into how to utilize Anchore Federal to find container vulnerabilities and alert or report on whether they are violating the security compliance required to be a DoD software factory.

Policy-based Software Supply Chain Security and Compliance

The power of a policy-based approach to software supply chain security is that it can be integrated directly into a DevOps pipeline and automate a significant amount of alerting, reporting and enforcement work. The blog posts below go into depth on how this automated approach to security and compliance can uplevel a DoD software factory:

A Policy Based Approach to Container Security & Compliance

  • This blog details how a policy-based platform works and how it can benefit both software supply chain security and compliance. 

The Power of Policy-as-Code for the Public Sector

  • This follow-up to the post above shows how the policy-based security platform outlined in the first blog post can have significant benefits to public sector organizations that have to focus on both internal information security and how to prove they are compliant with government standards.

Benefits of Static Image Inspection and Policy Enforcement

  • Getting a bit more technical this blog details how a policy-based development workflow can be utilized as a security gate with deployment orchestration systems like Kubernetes.

Getting Started With Anchore Policy Bundles

  • An even deeper dive into what is possible with the policy-based security system provided by Anchore Enterprise, this blog gets into the nitty-gritty on how to configure policies to achieve specific security outcomes.

Unpacking the Power of Policy at Scale in Anchore

  • This blog shows how a security practitioner can extend the security signals that Anchore Enterprise collects with the assistance of a more flexible data platform like New Relic to derive more actionable insights.

Security Technical Implementation Guide (STIG)

The Security Technical Implementation Guides (STIGs) are fantastic technical guides for configuring off the shelf software to DoD hardening standards. Anchore being a company focused on making security and compliance as simple as possible has written a significant amount about how to utilize STIGs and achieve STIG compliance, especially for container-based DevSecOps pipelines. Exactly the kind of software development environments that meet the standards of a DoD software factory. View our previous content below:

4 Ways to Prepare your Containers for the STIG Process

  • In this blog post, we give you four quick tips to help you prepare for the STIG process for software containers. Think of this as the amuse bouche to prepare you for the comprehensive white paper that comes next.

Navigating STIG Compliance for Containers

  • As promised, this is the extensive document that walks you through how to build a DevSecOps pipeline based on containers that is both high velocity and secure. Perfect for organizations that are aiming to roll their own DoD software factory.

User Stories

Anchore has been supporting FSIs and DoD programs to build DevSecOps programs that meet the criteria to be called a DoD software factory for the past decade. We can write technical guides and best practices documents till time ends but sometimes the best lessons are learned from real-life stories. Below are user stories that help fill in all of the details about how a DoD software factory can be built from scratch:

DoD’s Pathway to Secure Software

  • Join Major Camdon Cady of Platform One and Anchore’s VP of Security, Josh Bressers as they discuss the lessons learned from building a DoD software factory from the ground up. Watch this on-demand webinar to get all of the details in a laid back and casual conversation between two luminaries in their field.

Development at Mach Speed

  • If you prefer a written format over video, this case study highlights how Platform One utilized Red Hat OpenShift and Anchore Federal to build their DoD software factory that has become the leading Managed Service Provider for DoD programs.

Conclusion

Similar to how Cloud has taken over the infrastructure discussion in the enterprise world, DoD software factories are quickly becoming the go-to solution for DoD programs and the FSIs that support them. Delivering on the promise of the DevOps movement of high velocity development without compromising security, a DoD software factory is the one-stop shop to upgrade your software development practice into the modern age and become compliant as a bonus! If you’re looking for an easy button to infuse your DevOps pipeline with security and compliance without the headache of building it yourself, take a look at Anchore Federal and how it helps organizations layer software supply chain security into a DoD software factory and achieve a cATO.

Navigating Continuous Authority To Operate (cATO): A Guide for Getting Started

Continuous Authority to Operate (cATO), sometimes known as Rapid ATO, is becoming necessary as the DoD and civilian agencies put more applications and data in the cloud. Speed and agility are becoming increasingly critical to the mission as the government and federal system integrators seek new features and functionalities to support the warfighter and other critical U.S. government priorities.

In this blog post, we’ll break down the concept of cATO in understandable terms, explain its benefits, explore the myths and realities of cATO and show how Anchore can help your organization meet this standard.

What is Continuous Authority To Operate (cATO)?

Continuous ATO is the merging of traditional authority to operate (ATO) risk management practices with flexible and responsive DevSecOps practices to improve software security posture.

Traditional Risk Management Framework (RMF) implementations focus on obtaining authorization to operate once every three years. The problem with this approach is that security threats aren’t static, they evolve. cATO is the evolution of this framework which requires the continual authorization of software components, such as containers, by building security into the entire development lifecycle using DevSecOps practices. All software development processes need to ensure that the application and its components meet security levels equal to or greater than what an ATO requires.

You authorize once and use the software component many times. With a cATO, you gain complete visibility into all assets, software security, and infrastructure as code.

By automating security, you are then able to obtain and maintain cATO. There’s no better statement about the current process for obtaining an ATO than this commentary from Mary Lazzeri with Federal Computer Week:

“The muddled, bureaucratic process to obtain an ATO and launch an IT system inside government is widely maligned — but beyond that, it has become a pervasive threat to system security. The longer government takes to launch a new-and-improved system, the longer an old and potentially insecure system remains in operation.”

The Three Pillars of cATO

To achieve cATO, an Authorizing Official (AO) must demonstrate three main competencies:

  1. Ongoing visibility: A robust continuous monitoring strategy for RMF controls must be in place, providing insight into key cybersecurity activities within the system boundary.
  2. Active cyber defense: Software engineers and developers must be able to respond to cyber threats in real-time or near real-time, going beyond simple scanning and patching to deploy appropriate countermeasures that thwart adversaries.
  3. Adoption of an approved DevSecOps reference design: This involves integrating development, security, and operations to close gaps, streamline processes, and ensure a secure software supply chain.

Looking to learn more about the DoD DevSecOps Reference Design? It’s commonly referred to as a DoD Software Factory. Anchore has been helping organizations and agencies put the Sec in DevSecOps by securing traditional software factories, transforming them into DoD software factories.

Continuous ATO vs. ATO

The primary difference between traditional ATOs and continuous ATOs is the frequency at which a system seeks to prove the validity of its security claims. ATOs require that a system can prove its security once every three years whereas cATO systems prove their security every moment that the system is running.

The Benefits of Continuous ATO

Continuous ATO is essentially the process of applying DevSecOps principles to the compliance framework of Authority to Operate. Automating the individual compliance processes speeds up development work by avoiding repetitive tasks to obtain permission. Next, we’ll explore additional (and sometimes unexpected) benefits of cATO.

Increase Velocity of System Deployment

CI/CD systems and the DevSecOps design pattern were created to increase the velocity at which new software can be deployed from development to production. On top of that, Continuous ATOs can be more easily scaled to accommodate changes in the system or the addition of new systems, thanks to the automation and flexibility offered by DevSecOps environments.

Reduce Time and Complexity to Achieve an ATO

With the cATO approach, you can build a system to automate the process of generating the artifacts to achieve ATO rather than manually producing them every three years. This automation in DevSecOps pipelines helps in speeding up the ATO process, as it can generate the artifacts needed for the AO to make a risk determination. This reduces the time spent on manual reviews and approvals. Much of the same information will be requested for each ATO, and there will be many overlapping security controls. Designing the DevSecOps pipeline to produce the unique authorization package for each ATO from the corpus of data and information available can lead to increased efficiency via automation and re-use.

No Need to Reinvent AND Maintain the Wheel

When you inherit the security properties of the DevSecOps reference design or utilize an approved managed platform, then the provider will shoulder the burden. Someone else has already done the hard work of creating a framework of tools that integrate together to achieve cATO, re-use their effort to achieve cATO for your system. 

Alternatively, you can utilize a platform provider, such as Platform One, Kessel Run, Black Pearl, or the Army Software Factory to outsource the infrastructure management.

Learn how Anchore helped Platform One achieve cATO and become the preeminent DoD software factory:

Myths & Realities

Myth or Reality?: DevSecOps can be at Odds with cATO

Myth! DevSecOps in the DoD and civilian government agencies are still the domain of early adopters. The strict security and compliance requirements — the ATO in particular — of the federal government make it a fertile ground for DevSecOps adoption. Government leaders such as Nicolas Chaillan, former chief software officer for the United States Air Force, are championing DevSecOps standards and best practices that the DoD, federal government agencies, and even the commercial sector can use to launch their own DevSecOps initiatives.

One goal of DevSecOps is to develop and deploy applications as quickly as possible. An ATO is a bureaucratic morass if you’re not proactive. When you build a DevSecOps toolchain that automates container vulnerability scanning and other areas critical to ATO compliance controls, can you put in the tools, reporting, and processes to test against ATO controls while still in your development environment.

DevSecOps, much like DevOps, suffers from a marketing problem as vendors seek to spin the definitions and use cases that best suit their products. The DoD and government agencies need more champions like Chaillan in government service who can speak to the benefits of DevSecOps in a language that government decision-makers can understand.

Myth or Reality?: Agencies need to adopt DevSecOps to prepare for the cATO 

Reality! One of the cATO requirements is to demonstrate that you are aligned with an Approved DevSecOps Reference Design. The “shift left” story that DevSecOps espouses in vendor marketing literature and sales decks isn’t necessarily one size fits all. Likewise, DoD and federal agency DevSecOps play at a different level. 

Using DevSecOps to prepare for a cATO requires upfront analysis and planning with your development and operations teams’ participation. Government program managers need to collaborate closely with their contractor teams to put the processes and tools in place upfront, including container vulnerability scanning and reporting. Break down your Continuous Integration/Continuous Development (CI/CD) toolchain with an eye on how you can prepare your software components for continuous authorization.

Myth or Reality?: You need to have SBOMs for everything in your environment

Myth! However…you need to be able to show your Authorizing Official (AO) that you have “the ability to conduct active cyber defense in order to respond to cyber threats in real time.” If a zero day (like log4j) comes along you need to demonstrate you are equipped to identify the impact on your environment and remediate the issue quickly. Showing your AO that you manage SBOMs and can quickly query them to respond to threats will have you in the clear for this requirement.

Myth or Reality?: cATO is about technology and process only

Myth! As more elements of the DoD and civilian federal agencies push toward the cATO to support their missions, and a DevSecOps culture takes hold, it’s reasonable to expect that such a culture will influence the cATO process. Central tenets of a DevSecOps culture include:

  • Collaboration
  • Infrastructure as Code (IaC)
  • Automation
  • Monitoring

Each of these tenets contributes to the success of a cATO. Collaboration between the government program office, contractor’s project team leadership, third-party assessment organization (3PAO), and FedRAMP program office is at the foundation of a well-run authorization. IAC provides the tools to manage infrastructure such as virtual machines, load balancers, networks, and other infrastructure components using practices similar to how DevOps teams manage software code.

Myth or Reality?: Reusable Components Make a Difference in cATO

Reality! The growth of containers and other reusable components couldn’t come at a better time as the Department of Defense (DoD) and civilian government agencies push to the cloud driven by federal cloud initiatives and demands from their constituents.

Reusable components save time and budget when it comes to authorization because you can authorize once and use the authorized components across multiple projects. Look for more news about reusable components coming out of Platform One and other large-scale government DevSecOps and cloud projects that can help push this development model forward to become part of future government cloud procurements.

How Anchore Helps Organizations Implement the Continuous ATO Process

Anchore’s comprehensive suite of solutions is designed to help federal agencies and federal system integrators meet the three requirements of cATO.

Ongoing Visibility

Anchore Enterprise can be integrated into a build pipeline, image registry and runtime environment in order to provide a comprehensive view of the entire software development lifecycle (SDLC). On top of this, Anchore provides out-of-the-box policy packs mapped to NIST 800-53 controls for RMF, ensuring a robust continuous monitoring strategy. Real-time notifications alert users when images are out of compliance, helping agencies maintain ongoing visibility into their system’s security posture.

Active Cyber Defense

While Anchore Enterprise is integrated into the decentralized components of the SDLC, it provides a centralized database to track and monitor every component of software in all environments. This centralized datastore enables agencies to quickly triage zero-day vulnerabilities with a single database query. Remediation plans for impacted application teams can be drawn up in hours rather than days or weeks. By setting rules that flag anomalous behavior, such as image drift or blacklisted packages, Anchore supports an active cyber defense strategy for federal systems.

Adoption of an Approved DevSecOps Reference Design

Anchore aligns with the DoD DevSecOps Reference Design by offering solutions for:

  • Container hardening (Anchore DISA policy pack)
  • Container policy enforcement (Anchore Enterprise policies)
  • Container image selection (Iron Bank)
  • Artifact storage (Anchore image registry integration)
  • Release decision-making (Anchore Kubernetes Admission Controller)
  • Runtime policy monitoring (Anchore Kubernetes Automated Inventory)

Anchore is specifically mentioned in the DoD Container Hardening Process Guide, and the Iron Bank relies on Anchore technology to scan and enforce policy that ensures every image in Iron Bank is hardened and secure.

Final Thoughts

Continuous Authorization To Operate (cATO) is a vital framework for federal system integrators and agencies to maintain a strong security posture in the face of evolving cybersecurity threats. By ensuring ongoing visibility, active cyber defense, and the adoption of an approved DevSecOps reference design, software engineers and developers can effectively protect their systems in real-time. Anchore’s comprehensive suite of solutions is specifically designed to help meet the three requirements of cATO, offering a robust, secure, and agile approach to stay ahead of cybersecurity threats. 

By partnering with Anchore, federal system integrators and federal agencies can confidently navigate the complexities of cATO and ensure their systems remain secure and compliant in a rapidly changing cyber landscape. If you’re interested to learn more about how Anchore can help your organization embed DevSecOps tooling and principles into your software development process, click below to read our white paper.